

Outline

Basic Circulations and Structure

- Primary Circulation
- Secondary Circulation
- Thermal Structure

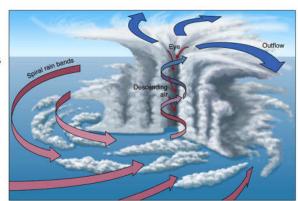
Basic Components of a Mature Hurricane

- Eye
- Eyewall
- Rainbands
- Low-Level Inflow
- Upper-Level Outflow

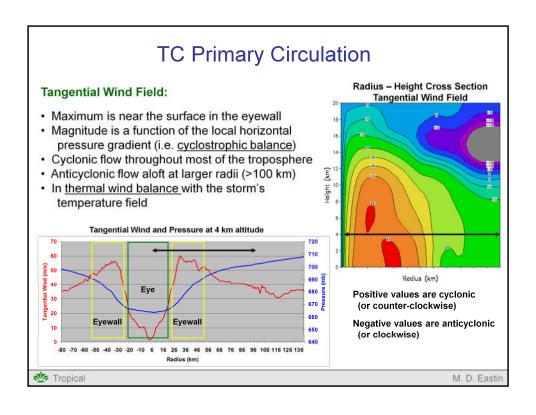
Tropical Cyclones as a Carnot Cycle

Differences between Tropical and Mid-Latitude Cyclones

Fun Facts about Tropical Cyclones

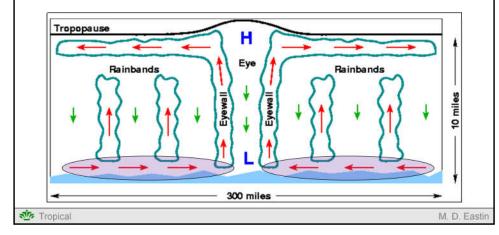

TC Circulations

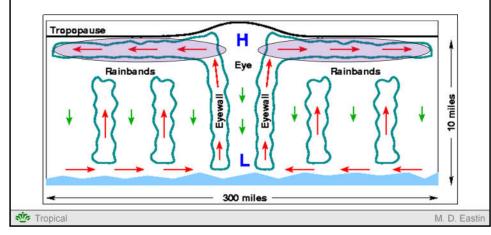
Primary Circulation:


The horizontal (or tangential) circulation that results from horizontal pressure gradients

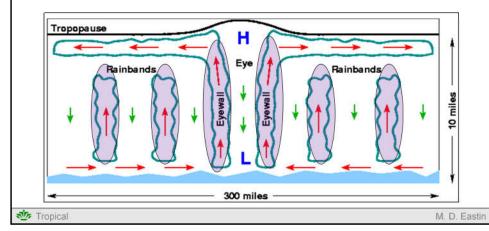
Secondary Circulation:

The radial and vertical (or transverse) circulation that results from friction, low-level convergence, and buoyancy in the eyewall and rainbands

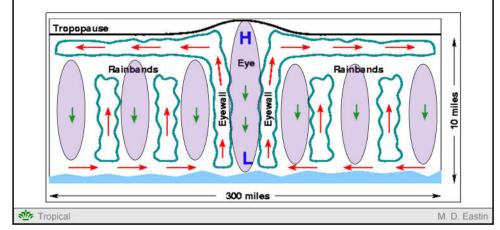



Radial Wind Field at Low-levels:

- Inflow driven by friction in the boundary layer
- Maximum found near the eyewall where the pressure gradient is maximum
- Supplies the rainbands and eyewall with warm moist air

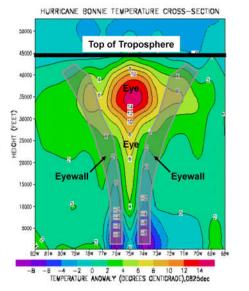

Radial Wind Field at Upper-levels:

- Outflow driven by forced ascent from below and the pressure gradient associated with the upper-level anticyclone
- Maximum found at large radii (> 200 km)


Vertical Wind Field:

- Ascent driven by low-level convergence and local buoyancy
- Primarily focused in narrow channels (the eyewall and rainbands)
- Maximum frequently observed in the upper-level eyewall (~10-20 m/s)
- · Resulting latent heat release contributes to the "warm core"

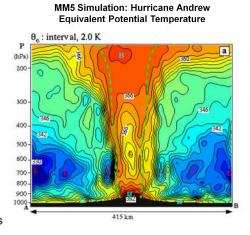
Vertical Wind Field:


- Descent driven by mass balance and convergence aloft.
- Frequently spread over wide regions (the eye) and bands ("moats").
- Magnitudes are much weaker (~0.1-0.2 m/s)
- Resulting adiabatic warming contributes to the warm core

Tropical Cyclone Thermal Structure

Temperature Field:

- · Tropical cyclones are "warm core"
- Air near the center of circulation (in the eye) is much warmer than air in the large-scale environment
- Maximum temperature anomalies located in the upper-level eye
- Anomalies result from eye subsidence and eyewall latent heat release
- The warm core is responsible for the extremely low surface pressures in the eye and large pressure gradients across the eyewall
- Warm core is in thermal wind balance with the primary circulation



** Tropical

Tropical Cyclone Thermal Structure

Equivalent Potential Temperature:

- A rough measure of the total thermodynamic energy (includes both temperature and moisture)
- Nearly conserved for both dry and moist adiabatic processes
- Maxima are frequently located in both the upper and lower eye.
 - Upper maximum caused by very warm temperatures and low pressures
 - Lower maximum caused by very moist air, moderately warm temperatures, and low pressures

** Tropical

Tropical Cyclone Eyes

Typical Conditions

- · Light winds
- · Clear or partly cloudy skies
- · Little or no precipitation
- · Stratocumulus layer near surface
- Range in diameter from 8 200 km
- · Size is not correlated with intensity

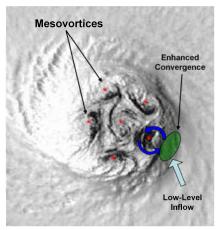
Origin

 Formed by air sinking from upper levels to lower levels

Role

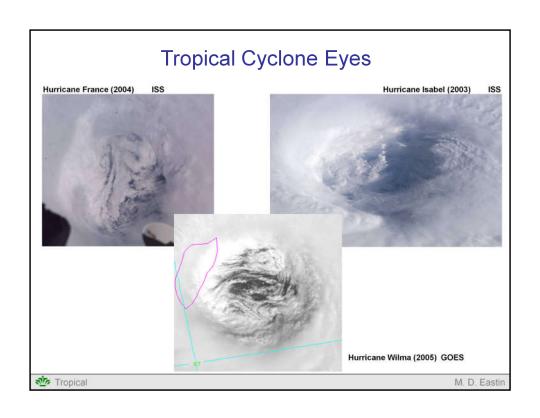
- · Home to the warm core
- "Buoyancy reservoir" for eyewall convection

Photograph from the NOAA WP-3D The Eye and Eyewall of Hurricane Olivia (1994)


Photo courtesy of Mike Black at NOAA HRD

Tropical

Tropical Cyclone Eyes


Eye Mesovortices

- Distinct cyclonic and anti-cyclonic features in the low-level clouds
- · 5-20 km in diameter
- May play a significant role in tropical cyclone evolution
 - Generate buoyant convection in the eyewall by ejecting the warm, moist air from the low-level eye
 - Generate enhanced convergence at the eyewall cloud base

Hurricane Isabel (2003) SSMI Visible

Tropical Cyclone Eyewalls

Basic Statistics

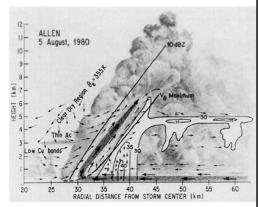
- · "Ring" of convection around the eye
- · Strongest winds near the surface
- Strongest updrafts (up to 25 m/s)
- · Highest clouds (up to 15 km)
- · Maximum pressure gradient
- · Maximum temperature gradient

Roles

- Primary upward branch of the secondary circulation
- Contributes to the warm core via latent heat release

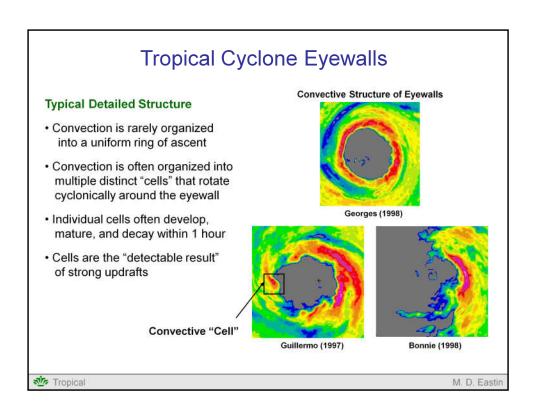
Photograph from the NOAA WP-3D The Eye and Eyewall of Hurricane Olivia (1994)

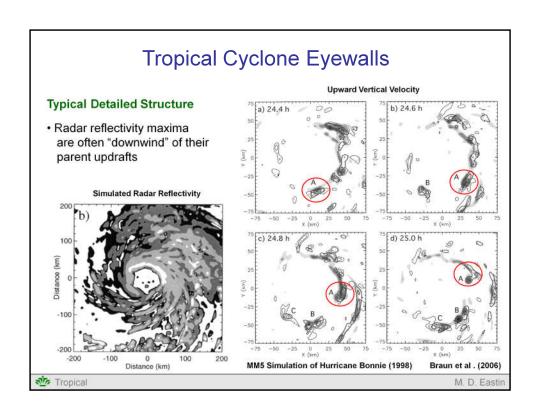
Photo courtesy of Mike Black at NOAA HRD


** Tropical

Tropical Cyclone Eyewalls

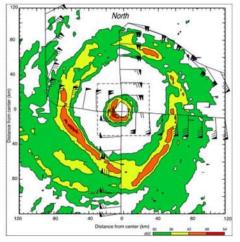
Typical Detailed Structure


- Convection slopes outward with height (30°-45° from vertical)
- Primary updraft located 2-5 km inside the tangential wind and radar reflectivity (precipitation) maxima
- Median (50% level) updraft magnitude is ~2.0 m/s
- 90% of convective updrafts are less than 8.0 m/s in magnitude
- Local eyewall "environment" contains CAPE < 500 J/kg
- Buoyant convection is common, but the observed local buoyancies within updrafts are often < 0.2°C


Aircraft Observation Composite of Eyewall Structure

From Jorgensen (1984)

** Tropical



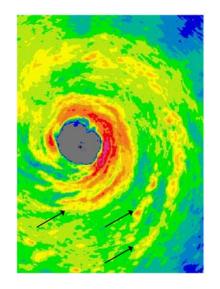
Tropical Cyclone Eyewalls

Multiple Eyewalls

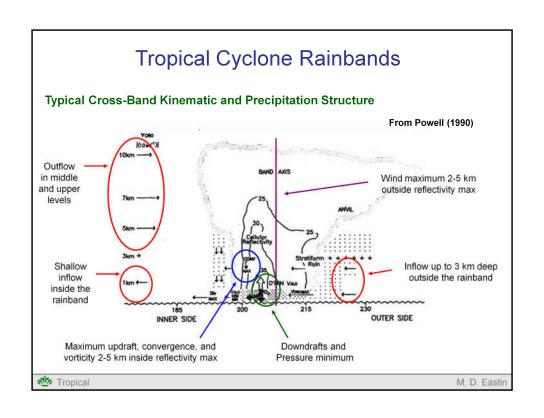
- More then 50% of tropical cyclones have multiple eyewalls at some point in their life
- Most common in major tropical cyclones (e.g. Cat 3-4-5)
- · Eyewall Replacement Cycles
 - · Major influence on storm intensity
 - Outer eyewall forms and begins to contract
 - · Inner eyewall collapses
 - Outer eyewall continues to contract and replaces the inner eyewall

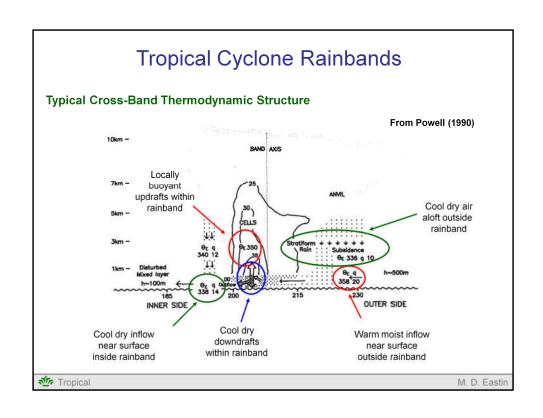
Hurricane Gilbert (1988)

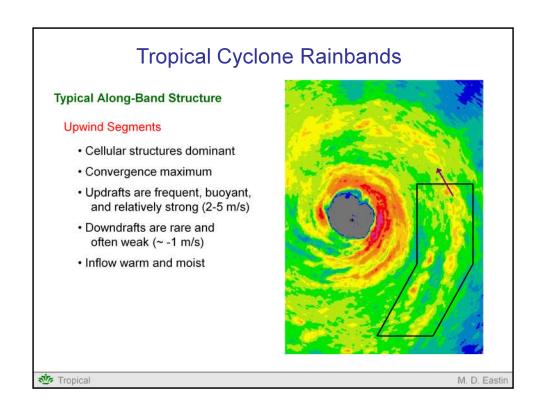
** Tropical

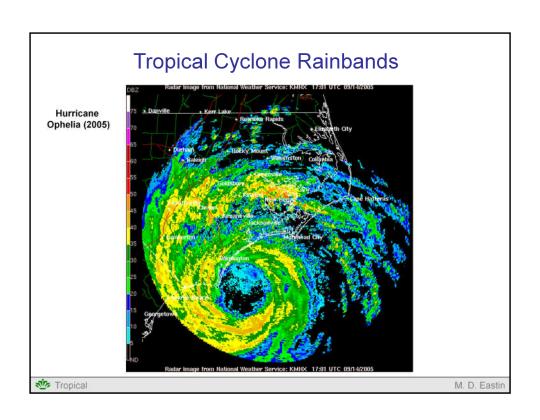

Tropical Cyclone Rainbands

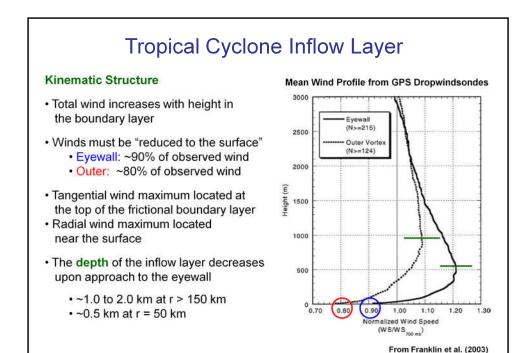
Basic Statistics

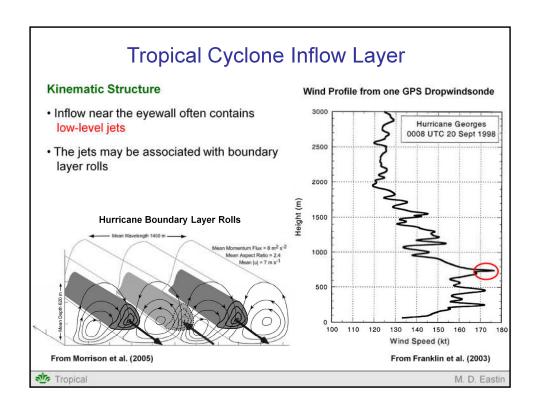

- Localized bands of precipitation outside the eyewall
- Often spiral inward
- Convection is shallower (up to 10 km)
- · Weaker updrafts (up to 20 m/s)
- Local rainband "environment" contains CAPE ~500 to 2000 J/kg
- Often contain prominent wind and temperature maxima


Roles


- Contribute to the warm core via latent heat release
- Moisten the atmosphere beyond the eyewall (help protect the eyewall)

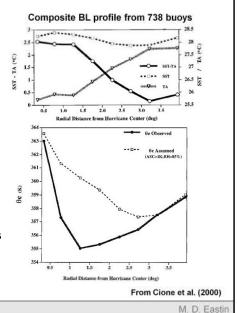


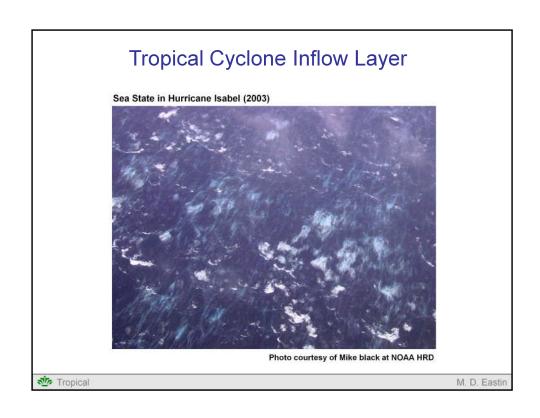




Tropical Cyclone Rainbands Typical Along-Band Structure Downwind Segments • Stratiform precipitation dominant • Updrafts are less frequent, less buoyant and relatively weak (1-3 m/s) • Downdrafts are more common, often contain cool/dry air, and are stronger (up to -3 m/s) • Occasional "cold pools" near surface

* Tropical

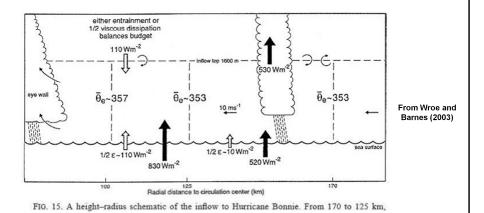

Tropical Cyclone Inflow Layer

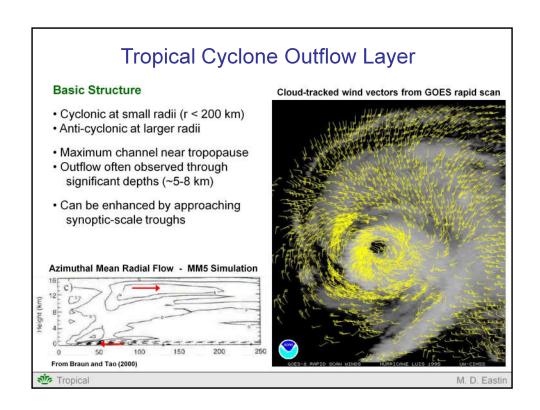

Thermodynamic Structure

- Sensible and latent heat fluxes from the ocean continuously act to increase the temperature and humidity of the air
- Adiabatic cooling (from the decrease in pressure) acts on the inflow
- Rainbands tap the warm moist air to supply their convection and often inject cold dry air
- Evaporation of sea spray acts to cool, but moisten the air (net θ_e decrease)
- Dissipative heating helps to offset

** Tropical

• The livelihood of eyewall convection relies on the surface fluxes to dominate

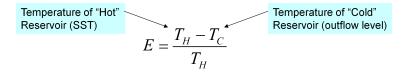



Tropical Cyclone Inflow Layer

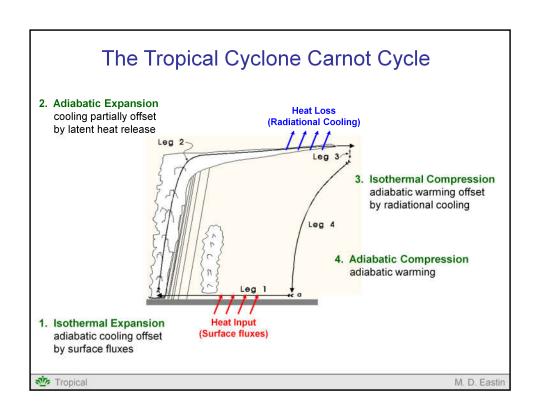
Thermodynamic Structure

** Tropical

 Budget analyses suggest hurricane rainbands can be a significant inhibitor to eyewall convection (and TC intensification)

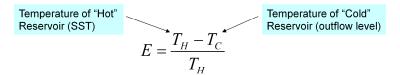


Tropical Cyclones and the Carnot Cycle


The Carnot Cycle describes an idealized (reversible) heat engine and can be approximately applied to tropical cyclones as a theoretical model of the secondary circulation

In 1824, Sadi Carnot proposed an "Idealized Heat Engine"

- A heat engine converts input energy (maybe from a fire) into work (like a steam engine)
- Each heat engine has an efficiency (E):



** Tropical

The Tropical Cyclone Carnot Cycle

How efficient is a tropical cyclone as a Carnot cycle?

Sea Surface Temperatures (SSTs): 26° to 30°C Outflow Temperatures: -60° to -80°C

Efficiency (tropical cyclones): 30 to 35% Efficiency (automobiles): ~25%

In reality, a tropical cyclone is not a true Carnot cycle. Why?

• Inflow is not isothermal (Leg 1)

· Ascent is not reversible due of rainfall (Leg 2)

** Tropical

Tropical vs. Mid-Latitude Cyclones

	Tropical Cyclone	Mid-Latitude Cyclone	_
Size (diameter)	~1000 km	~4000 km	
Lifetime	~4 days	~6 days	
Minimum Surface Pressure	1000-880 mb	1005-970 mb	
Level of Maximum Winds	Near Surface (Warm Core)	Near Tropopause (Cold Core)	
Warm/Cold Fronts?	No	Yes	
Primary Energy Source	Warm Oceans	Horizontal Temperature Gradients	
ropical			M. D. East

Tropical Cyclone Fun Facts

The Latent Energy Release in a strong tropical cyclone is enormous

- Roughly 1.5 x 1014 Watts
- Greater than the global electrical power consumption (~1.0 x 10¹³ W)
- Greater than ten times (10x) than the energy released by the atomic bomb dropped on Hiroshima (\sim 6.3 x 10¹² W)

Where does this energy go?

- Roughly 99.75% is used to simply raise the air parcels from the surface to the upper levels
- The other 0.25% is used to maintain the warm core and drive the primary circulation

Tropical Cyclone Structure

Summary

- Primary Circulation (structure and origin)
- Secondary Circulation (structure and origin)
- Thermodynamic Structure (structure and origin)
- Eye (structure, origin, role)
- Eyewall (structure, origin, role)
- Rainbands (variety, structure, origin, role)
- Inflow Layer (structure, role, impacts)
- Outflow Layer (structure)
- TCs as Carnot Heat Engines (basic concept, efficiency, reality)
- Differences between Tropical and Mid-latitude Cyclones

References

- Braun, S. A., M. T. Montgomery, and Z. Pu, 2006: High resolution simulation of Hurricane Bonnie (1998), J. Atmos. Sci., 63, 19-42
- Braun, S. A., and W.-K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. *Mon. Wea. Rev.*, **128**, 3941-3961.
- Cione, J. J., P. G. Black, and S. H. Houston, 2000: Surface observations in the hurricane environment. Mon. Wea. Rev., 128, 1550-1561.
- Franklin, J. L., M. L. Black, and K. Valde, 2003: GPS dropwindsonde wind profiles in hurricanes and their operational implications. *Wea. Forecasting*, **18**, 32-44.
- Jorgensen, D. P., 1984: Mesoscale and convective-scale characteristics of mature hurricanes. Part I: General Observations by research aircraft. *J. Atmos. Sci.*, **41**, 1268-1285.
- Jorgensen, D. P., 1984: Mesoscale and convective-scale characteristics of mature hurricanes. Part II: Inner-core structure of Hurricane Allen (1980). *J. Atmos. Sci.*, **41**, 1287-1311.
- Morrison, I., S. Businger, F. Marks, P. Dodge, and J. A. Businger, 2005: An observational case for prevalence of roll vortices in the hurricane boundary layer., *J. Atmos. Sci.*, **62**, 2662-2673.
- Powell, M, D, 1990: Boundary layer structure and dynamics in outer hurricane rainbands. Part I: Mesoscale rainfall and kinematic structure. *Mon. Wea. Rev.*, **118**, 891-917.
- Powell, M, D, 1990: Boundary layer structure and dynamics in outer hurricane rainbands. Part II:

 Downdraft modification and mixed layer recovery. *Mon. Wea. Rev.*, **118**, 918-938.
- Wroe, D. R., and G. M. Barnes, 2003: Inflow layer energetics of Hurricane Bonnie (1998) near landfall. Mon. Wea. Rev., 131, 1600-1612.

