Tropical Cyclone Structure

MMS5 Simulation of Hurricane Andrew Courtesy of Da-Lin Zhang at Univ. Maryland
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TC Circulations

Primary Circulation:

The horizontal (or tangential)
circulation that results from
horizontal pressure gradients |

Secondary Circulation:

The radial and vertical
(or transverse) circulation
that results from friction,
low-level convergence,
and buoyancy in the
eyewall and rainbands
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TC Primary Circulation

i & A - Radius - Height Cross Section
Tangential Wind Field: " Tangential Wind Field

« Maximum is near the surface in the eyewall

Magnitude is a function of the local horizontal
pressure gradient (i.e. cyclostrophic balance)

Cyclonic flow throughout most of the troposphere

Anticyclonic flow aloft at larger radii (=100 km)

In thermal wind balance with the storm’s
temperature field

Tangential Wind and Pressure at 4 km altitude
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TC Secondary Circulation

Radial Wind Field at Low-levels:

* Inflow driven by friction in the boundary layer
+ Maximum found near the eyewall where the pressure gradient is maximum

+ Supplies the rainbands and eyewall with warm moist air

Tropopause

- 10 miles ——=
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TC Secondary Circulation

Radial Wind Field at Upper-levels:

+ Outflow driven by forced ascent from below and the pressure gradient
associated with the upper-level anticyclone
+ Maximum found at large radii (> 200 km)
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TC Secondary Circulation

Vertical Wind Field:

+ Ascent driven by low-level convergence and local buoyancy

* Primarily focused in narrow channels (the eyewall and rainbands)

» Maximum frequently observed in the upper-level eyewall (~10-20 m/s)
+ Resulting latent heat release contributes to the “warm core”
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TC Secondary Circulation

Vertical Wind Field:

+ Descent driven by mass balance and convergence aloft.

» Frequently spread over wide regions (the eye) and bands (“moats”).
* Magnitudes are much weaker (~0.1-0.2 m/s)

» Resulting adiabatic warming contributes to the warm core
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Tropical Cyclone Thermal Structure

HURRICANE BONNIE TEWMPERATURE CROSS-SECTION

Temperature Field:

« Tropical cyclones are “warm core”

Top of Troposphere
45000
« Air near the center of circulation =

(in the eye) is much warmer than !
air in the large-scale environment

§ &

« Maximum temperature anomalies
located in the upper-level eye

« Anomalies result from eye subsidence
and eyewall latent heat release

HEIGHT {FEET)
g

3

« The warm core is responsible for the 100
extremely low surface pressures in
the eye and large pressure gradients
across the eyewall

=

= Warm core is in thermal wind balance
with the primary circulation
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Tropical Cyclone Thermal Structure

Equivalent Potential Temperature:

MM5 Simulation: Hurricane Andrew

» Arough measure of the total
Equivalent Potential Temperature

thermodynamic energy (includes

both temperature and moisture) 8, : interval, 20K
.=
« Nearly conserved for both dry and e |

moist adiabatic processes

« Maxima are frequently located in
both the upper and lower eye.

* Upper maximum caused by very
warm temperatures and low
pressures

* Lower maximum caused by very
moist air, moderately warm 1o
temperatures, and low pressures
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Tropical Cyclone Eyes

Typical Conditions

» Light winds

« Clear or partly cloudy skies

« Little or no precipitation

« Stratocumulus layer near surface

* Range in diameter from 8 - 200 km
« Size is not correlated with intensity

Origin

» Formed by air sinking from upper
levels to lower levels

Role

* Home to the warm core
« “Buoyancy reservoir” for eyewall
convection

Photograph from the NOAA WP-3D
The Eye and Eyewall of Hurricane Olivia (1994)

Photo courtesy of Mike Black at NOAA HRD
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Tropical Cyclone Eyes

Eye Mesovortices

+ Distinct cyclonic and anti-cyclonic
features in the low-level clouds

* 5-20 km in diameter

« May play a significant role in
tropical cyclone evolution

* Generate buoyant convection in
the eyewall by ejecting the warm,
moist air from the low-level eye

« Generate enhanced convergence
at the eyewall cloud base

Mesovortices

Low-Level
Inflow

Hurricane Isabel (2003) SSMI Visible
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Hurricane France (2004

Tropical Cyclone Eyes

ISS

Hurricane Wilma (2005) GOES

% Tropical

M. D. Eastin

13



Tropical Cyclone Eyewalls

: s Photograph from the NOAA WP-3D
Basic Statistics The Eye and Eyewall of Hurricane Olivia (1994)

« “Ring” of convection around the eye
« Strongest winds near the surface

« Strongest updrafts (up to 25 m/s)

» Highest clouds (up to 15 km)

« Maximum pressure gradient

* Maximum temperature gradient

Roles

* Primary upward branch of the
secondary circulation

= Contributes to the warm core via
latent heat release

Photo courtesy of Mike Black at NOAA HRD

A% Tropical

M. D. Eastin

14



Tropical Cyclone Eyewalls

Typical Detailed Structure

» Convection slopes outward with
height (30°-45° from vertical)

* Primary updraft located 2-5 km
inside the tangential wind and
radar reflectivity (precipitation)
maxima

* Median (50% level) updraft
magnitude is ~2.0 m/s

* 90% of convective updrafts are
less than 8.0 m/s in magnitude

* Local eyewall “environment”
contains CAPE < 500 J/kg

» Buoyant convection is common,
but the observed local buoyancies
within updrafts are often < 0.2°C
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Aircraft Observation Composite
of Eyewall Structure
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From Jorgensen (1984)
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Tropical Cyclone Eyewalls

Convective Structure of Eyewalls

Typical Detailed Structure

« Convection is rarely organized
into a uniform ring of ascent

» Convection is often organized into
multiple distinct “cells” that rotate
cyclonically around the eyewall

« Individual cells often develop,
mature, and decay within 1 hour

« Cells are the "detectable result”
of strong updrafts

Convective “Cell”
Guillermo (1997) EBonnie (1998)
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Tropical Cyclone Eyewalls

Typical Detailed Structure

* Radar reflectivity maxima
are often “downwind” of their
parent updrafts

Simulated Radar Reflectivity
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Tropical Cyclone Eyewalls

Multiple Eyewalls

» More then 50% of tropical cyclones
have multiple eyewalls at some
point in their life

« Most common in major tropical
cyclones (e.g. Cat 3-4-5)

» Eyewall Replacement Cycles

* Major influence on storm intensity

» Outer eyewall forms and begins
to contract

* Inner eyewall collapses

* Outer eyewall continues to
contract and replaces the
inner eyewall

Hurricane Gilbert (1988)
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Tropical Cyclone Rainbands

Basic Statistics

* Localized bands of precipitation
outside the eyewall

« Often spiral inward

« Convection is shallower (up to 10 km)

» Weaker updrafts (up to 20 m/s)

+ Local rainband “environment”
contains CAPE ~500 to 2000 J/kg

« Often contain prominent wind and
temperature maxima

Roles

* Contribute to the warm core via
latent heat release

» Moisten the atmosphere beyond the
eyewall (help protect the eyewall)
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s Tropical

Maximum updraft, convergence, and
vorticity 2-5 km inside reflectivity max

Tropical Cyclone Rainbands

Typical Cross-Band Kinematic and Precipitation Structure

Vemo
Kro'N
10km —+
Outflow —— 2o e
in middle
and upper
levels fon ——+
Sk ——#
3 » ey
Shallow Fr
inflow EYy
inside the i
rainband =

From Powell (1990)

Wind maximum 2-5 km
/ outside reflectivity max

Inflow up to 3 km deep
outside the rainband

0
OUTER SIDE

Downdrafts and
Pressure minimum
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Tropical Cyclone Rainbands

Typical Cross-Band Thermodynamic Structure

From Powell (1990)

10km =
BAND AXIS
Locally
7*km=" buoyant
updrafts within AL
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\ | it rainband
. : | T
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Cool dry inflow Cool dry Warm moist inflow
near surface (downdrafts near surface
inside rainband within rainband outside rainband
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Tropical Cyclone Rainbands

Typical Along-Band Structure

Upwind Segments
= Cellular structures dominant

« Convergence maximum

« Updrafts are frequent, buoyant,
and relatively strong (2-5 m/s)

* Downdrafts are rare and
often weak (~ -1 m/s)

* Inflow warm and moist
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Tropical Cyclone Rainbands

Typical Along-Band Structure

Downwind Segments

« Stratiform precipitation dominant

« Updrafts are less frequent,
less buoyant and relatively
weak (1-3 m/s)

» Downdrafts are more common,
often contain cool/dry air, and
are stronger (up to -3 m/s)

* Occasional “cold pools” near
surface
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Tropical Cyclone Rainbands

Hurricane
Ophelia (2005)

MHX 17:01 UT
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Tropical Cyclone Inflow Layer

Kinematic Structure Mean Wind Profile from GPS Dropwindsondes
+ Total wind increases with height in ITTTTTR
the boundary layer —— Eyowall
ry y 2800 |- {Enf,.z‘s]
+ Winds must be “reduced to the surface” o s Yo
* Eyewall: ~90% of observed wind L
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2 I :
+ Tangential wind maximum located at 2 - VY . -
the top of the frictional boundary layer 1 i :
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Tropical Cyclone Inflow Layer

Kinematic Structure Wind Profile from one GPS Dropwindsonde
* Inflow near the eyewall often contains e e e N —
low-level jets : | Hurricane Georges |

| 0008 UTC 20 Sept 1998

et W OO, <=0 ommrer ppmsores:

* The jets may be associated with boundary
layer rolls
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From Morrison et al. (2005) From Franklin et al. (2003)
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Tropical Cyclone Inflow Layer

Thermodynamic Structure

= Sensible and latent heat fluxes
from the ocean continuously
act to increase the temperature
and humidity of the air

+ Adiabatic cooling (from the decrease in

pressure) acts on the inflow
» Rainbands tap the warm moist air
to supply their convection and often
inject cold dry air
» Evaporation of sea spray acts to cool,
but moisten the air (net 8. decrease)
* Dissipative heating helps to offset

* The livelihood of eyewall convection relies

on the surface fluxes to dominate

SST - TA (*0)

Be &)

3
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Composite BL profile from 738 buoys
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From Cione et al. (2000)
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Tropical Cyclone Inflow Layer

Sea State in Hurricane Isabel (2003)

Photo courtesy of Mike black at NOAA HRD
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Tropical Cyclone Inflow Layer

Thermodynamic Structure

» Budget analyses suggest hurricane rainbands can be a significant inhibitor

to eyewall convection (and TC intensification)

1/2 viscous dissipation

% either entrainment or
balances budget

-————~—’13{VF29 ————— o v T 2-€;

aden 0e~357 6o~353

From Wroe and

I | 1gms™ 1
| | T | Barnes (2003)
| | |
| | |
sea surfaco
1/2e~110Wm? %
830Wm2 520Wm
1 1 1
100 125 170
Radial distance lo circulation center (km)
FIG. 15. A height-radius schematic of the inflow to Hurnicane Bonme. From 170 to 125 km,
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Haght (km)

Tropical Cyclone Outflow Layer

Basic Structure Cloud-tracked wind vectors from GOES rapid scan

+ Cyclonic at small radii (r < 200 km)
« Anti-cyclonic at larger radii

* Maximum channel near tropopause
« Outflow often observed through
significant depths (~5-8 km)

» Can be enhanced by approaching
synoptic-scale troughs

From Braun and Tao (2000)
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Tropical Cyclones and the Carnot Cycle

The Carnot Cycle describes an idealized (reversible) heat engine and can

be approximately applied to tropical cyclones as a theoretical model of the
secondary circulation

In 1824, Sadi Carnot proposed an “Idealized Heat Engine”

* Aheat engine converts input energy (maybe from a fire) into work
(like a steam engine)

» Each heat engine has an efficiency (E):

Temperature of “Hot” Temperature of “Cold”
Reservoir (SST) \ / Reservoir (outflow level)
E T, H T, C
T H

W% Tropica
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The Tropical Cyclone Carnot Cycle

2. Adiabatic Expansion
cooling partially offset
by latent heat release

Heat Loss
(Radiational Cooling)

- Leg a3~}

3. Isothermal Compression
adiabatic warming offset
by radiational cooling

Leg 4

4, Adiabatic Compression
adiabatic warming

1. Isothermal Expansion Heat Input
adiabatic cooling offset (Surface fluxes)
by surface fluxes

W= Tropical M. D. Eastin
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The Tropical Cyclone Carnot Cycle

How efficient is a tropical cyclone as a Carnot cycle?

Temperature of “Hot”

Reservoir (SST) \
T,

Temperature of “Cold”

/ Reservoir (outflow level)

E=-H Tc
T, H
Sea Surface Temperatures (SSTs): 26° to 30°C
Outflow Temperatures: -60° to -80°C
Efficiency (tropical cyclones): 30 to 35%
Efficiency (automobiles): ~25%

In reality, a tropical cyclone is not a true Carnot cycle. Why?

* Inflow is not isothermal (Leg 1)
« Ascent is not reversible due of rainfall (Leg 2)

% Tropica M. D. Eastin

33



Tropical vs. Mid-Latitude Cyclones
Tropical Mid-Latitude
Cyclone Cyclone
Size (diameter) ~1000 km ~4000 km
Lifetime ~4 days ~6 days
Minimum Surface Pressure 1000-880 mb 1005-970 mb
Level of Maximum Winds Near Surface  Near Tropopause
(Warm Core) (Cold Core)
Warm/Cold Fronts? No Yes
Primary Energy Source Warm Oceans Horizontal
Temperature
Gradients

A% Tropica
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Tropical Cyclone Fun Facts

The Latent Energy Release in a strong tropical cyclone is enormous
* Roughly 1.5 x 104 Watts
« Greater than the global electrical power consumption (~1.0 x 10'3 W)
* Greater than ten times (10x) than the energy released by the atomic
bomb dropped on Hiroshima (~6.3 x 1012 W)

Where does this energy go?

* Roughly 99.75% is used to simply raise the air parcels from the
surface to the upper levels

* The other 0.25% is used to maintain the warm core and drive the
primary circulation

% Tropica M. D. Eastin
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Tropical Cyclone Structure

Summary

« Primary Circulation (structure and origin)
» Secondary Circulation (structure and origin)
» Thermodynamic Structure (structure and origin)

* Eye (structure, origin, role)

» Eyewall (structure, origin, role)

» Rainbands (variety, structure, origin, role)
* Inflow Layer (structure, role, impacts)

* Outflow Layer (structure)

» TCs as Carnot Heat Engines (basic concept, efficiency, reality)

» Differences between Tropical and Mid-latitude Cyclones

M. D. Eastin

36



References

Braun, S. A., M. T. Montgomery, and Z. Pu, 2006: High resolution simulation of Hurricane Bonnie (1998),
J. Atmos. Sci., 63, 19-42

Braun, S. A., and W.-K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991)
to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 3941-3961.

Cione, J. J., P. G. Black, and S. H. Houston, 2000: Surface observations in the hurricane environment.
Mon. Wea. Rev., 128, 1550-1561.

Franklin, J. L., M. L. Black, and K. Valde, 2003: GPS dropwindsonde wind profiles in hurricanes and
their operational implications. Wea. Forecasting, 18, 32-44.

Jorgensen, D. P.,, 1984: Mesoscale and convective-scale characteristics of mature hurricanes.
Part I: General Observations by research aircraft. J. Atmos. Sci., 41, 1268-1285.

Jorgensen, D. P.,, 1984: Mesoscale and convective-scale characteristics of mature hurricanes.
Part II: Inner-core structure of Hurricane Allen (1980). J. Atmos. Sci., 41, 1287-1311.

Morrison, I., S. Businger, F. Marks, P. Dodge, and J. A. Businger, 2005: An observational case for
prevalence of roll vortices in the hurricane boundary layer., J. Atmos. Sci., 62, 2662-2673.

Powell, M, D, 1990: Boundary layer structure and dynamics in outer hurricane rainbands. Part I:
Mesoscale rainfall and kinematic structure. Mon. Wea. Rev.,, 118, 891-917.

Powell, M, D, 1990: Boundary layer structure and dynamics in outer hurricane rainbands. Part II:
Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118, 918-938.

Wroe, D. R., and G. M. Barnes, 2003: Inflow layer energetics of Hurricane Bonnie (1998) near landfall,
Mon. Wea. Rev, 131, 1600-1812.

% Tropica M. D. Eastin

37



