S. 1 REVISION

Exercise 1.

Length

Convert the following as instructed:
(i) 15.4 mm to metres
(ii) 20 m to centimetres
(iii) 0.072 km to metres
(iv) 350 cm to metres

Exercise 2.

Mass

Convert the following as instructed:
(i) 10000 grams to kilograms
(ii) 3 kg to dg
(iii) 40 mg to kg
(iv) 230.45 g to cg

Exercise 3.

Area
Convert the following as instructed
(i) $25 \mathrm{~mm}^{2}$ to cm^{2}
(ii) $20 \mathrm{~m}^{2}$ to mm^{2}
(iii) $17.4 \mathrm{~mm}^{2}$ to m^{2}

Exercise 4.

Volume

Convert the following as instructed
(i) $350 \mathrm{~cm}^{3}$ to m^{3}
(ii) $500 \mathrm{ml}^{3}$ to m^{3}
(iii) 100000 litres to m^{3}

Exercise 5.

1. A cuboid has dimensions 2 cm by 10 cm . Find its width in metre if it occupies a volume of $70 \mathrm{~cm}^{3}$.
2. (a) Find the volume of water in a cylinder of water radius 6 cm if its height is 10 cm
(b) The volume of the cylinder was $140 \mathrm{~m}^{3}$. When a stone was lowered in the cylinder filled with water the volume increased to 15 cm 3 .

Find the height of the cylinder of radius 7 cm .
3. A Perspex box has 10 cm square base and contains water to a height of 20 cm . A piece of rock of mass 600 g is lowered gently into the water and the level rises to 12 cm . Find the;
(i) Volume of water displaced by the rock.
(ii) volume of the rock in and
(iii) density of the rock in

EXERCISE 6.

DENSITY.

1. A Perspex box has a 5 cm square base containing water to a height of 10 cm . A piece of rock of mass 600 g is lowered into the water and the level rises to 12 cm .
(a) What is the volume of water displaced by the rock?
(b) What is the volume of the rock?
2. The mass of $25.4 \mathrm{~cm}^{3}$ of mercury is 332 g . Find the density of mercury.
3. An 800 g solid measures 10 cm by 5 cm by 4 cm . Determine its density.
4. A glass stopper of volume 16 cm 3 weighs 60 g . Calculate its density in :
(i) gcm^{-3}.
(ii) kgm^{-3}.
5. The density of copper is $6.9 \mathrm{gcm}^{-3}$. What is the mass of 100 cm 3 of copper?

When a piece of irregular stone of mass 400 g is lowered in a measuring cylinder, the initial and final volumes were $500 \mathrm{~cm}^{3}$ and 600 cm 3 respectively. Calculate the density of the stone.
6. An empty beaker weighs 140 g in air and 180 g when filled with 75 cm 3 of methylated spirit. Find the density of methylated spirit.
7. What is the mass of 1.5 litres of water?
8. The oil level in a burette is $25 \mathrm{~cm}^{3} .100$ drops of oil fall from a burette. If the volume of one drop is $0.1 \mathrm{~cm}^{3}$. What is the final oil level in the burette.
9. A measuring cylinder has water level of 13 cm . What will be the new water level if 1.6 g of a metallic block of density $0.8 \mathrm{~g} / \mathrm{cm}^{3}$ is added.
10. A perspex box having 6 cm square base contains water to a height of 10 cm . Find the volume of water in the box
11.A stone of mass 120 g is lowered into the box and the level of water rises to 13 cm .
(i) Find the new volume of water?
(ii) Find the volume of the stone?
11. Liquids X and Yare mixed to form a solution. If the density of X is $0.8 \mathrm{gcm}^{-3}$ and volume is $100 \mathrm{~cm}^{3}$, density of Y $1.5 \mathrm{~cm}^{-3}$ and its volume is $300 \mathrm{~m}^{3}$. Find the;
(i) mass of liquid X
(ii) mass of liquid Y
(iii) Density of a mixture
12. In an experiment to determine the density of a pin, 100pins are gently lowered into a measuring cylinder containing $12 \mathrm{~cm}^{3}$ of water. The water in the cylinder rose to $98 \mathrm{~cm}^{3}$. Find the;
(i) volume of a pin.
(ii) density of the pin in kgm^{-3}

Exercise 7.

DENSITY OF MIXTURES.

1. An alloy is formed by adding 500 g of element P of density $5 \mathrm{gcm}-3$ to 400 cm 3 of element Q of density $4 \mathrm{gcm}-3$. Calculate the density of the alloy.

2500 cm 3 of liquid X of density $2 \mathrm{gcm}-3$ is combined with 200 g of liquid Y of density $4 \mathrm{gcm}-3$. Calculate the density of the mixture.
3. Liquid M of density $0.5 \mathrm{gcm}-3$ is mixed with liquid N in equal volumes. If the mixture has a density of $0.8 \mathrm{gcm}-3$, Find the density of liquid N .
4. $3 \mathrm{~cm}^{-3}$ of water was mixed with $5 \mathrm{~cm}^{-3}$ of milk of density $1500 \mathrm{kgm}-3$. Find the density of the mixture.
5. Liquid A of volume 400 cm 3 and density $800 \mathrm{kgm}-3$ is mixed with liquid B of volume $600 \mathrm{~cm}^{3}$ and density $1120 \mathrm{kgm}^{-3}$. Calculate the density of the mixture.

Exercise 8.

1. A bottle full of water has a mass of 45 g , when full of ethanol, its massis 36 g . If the empty bottle weighs 20 g , calculate the density of ethanol.
2. Density bottle has a mass of 70 g when empty, 90 g when full of water and 94 g when full of liquid. Find the relative density of the liquid and its density.
3. An empty 60 -litre petrol tank weighs 10 kg . What will be its mass when full of petrol of relative density 0.72 ?
4. A density bottle was used to measure the relative density of a liquid and the following results were obtained.

Mass of empty bottle : $=20 \mathrm{~g}$
Mass of bottle full of water : $=130 \mathrm{~g}$
Mass of bottle full of liquid : $=110 \mathrm{~g}$
Calculate the density of the liquid.
5. An empty density bottle is 56.00 g . When fully filled with water, it weighs 86.00 g . It weighs 86.00 g when full of an unknown liquid. Find the density of the liquid.
6. A piece of aluminum weighs 80 N in air and 50.37 N when completely immersed in water. Calculate the relative density of aluminum.
7. Two solid cubes have the same mass but their surface areas are in the ratio of $1: 16$ What is the ratio of their densities?
A. $1: 2$
B. $4: 1$
C. $64: 1$
D. $1: 64$
9. A metal cuboid of dimensions 3 cm by 2 cm by 1 cm and $8.9 \mathrm{~g} \mathrm{~cm}-3$ is completely immersed in a liquid of density $0.8 \mathrm{~g} \mathrm{~cm}-3$. The mass of the liquid displaced is.
A. 53.4 g .
B. 7.5 g .
C. 29.1 g .
D. 4.8 g .
10. 0.002 m 3 of a liquid of density $800 \mathrm{kgm}^{-3}$ is mixed with $0.003 \mathrm{~m}^{3}$ of another liquid of density $1200 \mathrm{kgm}-3$. What is the density of the mixture?
A. $1,000 \mathrm{kgm}^{-3}$
B. $4,000 \mathrm{kgm}^{-3}$
C. $2,500 \mathrm{kgm}^{-3}$
D. $1,040 \mathrm{kgm}^{-3}$
11. A bottle weighs 160 g when empty, 760 g when filled with water, and 1 kg when filled with a certain liquid. Calculate the volume of the liquid in bottle.
A: $160 \mathrm{~cm}^{3}$
B: $600 \mathrm{~cm}^{3}$
C: $760 \mathrm{~cm}^{3}$
D: $1000 \mathrm{~cm}^{3}$
12. What mass of lead has the same volume as 1600 kg of petrol? $\left\{\right.$ Density of lead $=11400 \mathrm{~kg} \mathrm{~m}^{-3}$, Density of petrol $\left.=800 \mathrm{~kg} \mathrm{~m}^{-3}\right\}$
A. 22800 kg
C. 1600 kg
B. C. 11400 kg
D. 800 kg
13. A metal cuboid of dimensions 3 cm by 2 cm by 1 cm and $8.9 \mathrm{~g} \mathrm{~cm}-3$ is completely immersed in a liquid of density $0.8 \mathrm{~g} \mathrm{~cm}-3$. The mass of the liquid displaced is;
A. 53.4 g .
B. 29.1 g .

$$
\text { B. C. } 7.5 \mathrm{~g} . \quad \text { D. } 4.8 \mathrm{~g} .
$$

14. A tank 2 m tall and base area of 2.5 m 2 is filled to the brim with a liquid, which weighs 40000 N . Calculate, the density of the liquid in $\mathrm{kg} / \mathrm{m} 3$.
A. $40002 \times 2.5 \times 10$
B. $400002 \times 2.5 \times 10$
C. $40002 \times 2.5 \times 10$
D. 400002×25

PROJECT WORK:

You are required to make a clock for measuring time.
Hint; The simplest clock to make is a water clock using a transparent plastic container with a hole at the bottom.

Steps.

Place a stone in a container to make it float upright.
Put marks on the side as the water rises up.
By Choosing an appropriate container, hole and weight of stone, you can have marks reading 1 minute, 2 minutes, 3 minutes, etc. Even fractions of minutes can be obtained.

You can also make a sand clock using fine dry sand in a container.

