TERM I,2014 SET CONCEPTS

What is a set?

- A set is a collection of well-defined objects.
- Things found in a set are called members or elements.

Example of sets.

a) A set of the first five letters of alphabet.
b). A set of 2 trees.

Exercise 1a;

Draw and name the following sets;

1. A set of 4 girls. 2) A set of 5 chairs.
3) A set of 3 stars. 4) A set of 2 huts.

TYPES OF SETS.

1. Equal sets
2). Non-equal sets
3). Equivalent sets
4) Non - equivalent sets
5). Empty sets
6). Intersecting sets
7). Union set.

EQUAL or IDENTICAL SETS (" =")

- Equal sets are sets which have exactly the same type of members.

Example;

1. Set $A=\{c, u, t\}$ and $B=\{t, u, c\}$

Set A is equal to set B.

$$
A=B
$$

NON-EQUAL SETS (\neq)
> Non -equal sets which have different number of members of different kind.
Example;
Set $B=\{e, t, o\}$ and set $D=\{b, y\}$
Set B is not equal to D.
$B \neq D$
Exercise 1b;

Write equal or not equal.

1. Set $P=\{1,2,3,4,5\}$ and set $Q=\{3,5,2,1,4\}$. Set P is \qquad to set Q.
2. $D=\{a, i, o, u\}$ and set $E=\{e, f, g\}$. Set D is \qquad
3. Set $\mathrm{S}=$
 and set $\mathrm{T}=$ \qquad to set T

Powered by: -iToschool- | www.sch worporo.com | System developed by: lule 075269721
4. $\mathrm{R}=\{\bigcirc \square$, $\}$ and set $0=\{$ \square , \}Set R is \qquad to set 0 .

MATCHING OR EQUIVALENT SETS " \leftrightarrow

$>$ Equivalent sets are sets with the same number of members but may be of different kind.

- All equal sets are equivalent but not all equivalent sets are equal sets.

EXAMPLE

$P=\{a, e, i, o, u\}$ and $Q=\{1,2,3,4,5\}$.
Set P has 5 elements and set Q has 5 elements.
Set P is equivalent to set Q .

$$
\mathrm{P} \leftrightarrow \mathrm{Q}
$$

NON- EQUIVALENT SETS

> Non - equivalent sets do not have the same number of members.

$$
S=\{c, o, w\} \text { and } T=\{w, s\}
$$

Set S has 3 members and set T has 2 members.
S is not equivalent to set T

Exercise 1c;

Write Equivalent or not equivalent.

1. Set $E=\{a, b, c, d$,$\} and \operatorname{set} F=\{2,4,6,8\}$. Set E has \qquad elements. Set F has \qquad members. Set E is \qquad to set F.
2. Set $M=\{p, q, r, s, t\}$ and set $N=\{u, v, w, x\}$. Set M has \qquad members. Set N has \qquad members. Set M is \qquad to set N .
3. $A=$
 and set $B=$
 Set A has \qquad elements.Set B
has _elements. Set A is ___ to set B.

EMPTY or NULL SET " \varnothing Or, $\}$ \}"

An empty set is a set without members.
$>$ Another name for empty set is a null set.

Examples

a) Set $K=\{$ Pupils in $p 3$ with 10 legs $\}$

Set $K=\varnothing$ or $\}$.
b) Set $R=\{$ Our teachers with less than 3 years of age $\}$

$$
R=\varnothing \text { or }\} .
$$

NUMBER OF ELEMENTS IN A GIVEN SET e.g n(P).

Examples:

1. If $K=\{a, b, c, d\}$. Find $n(K)$
$K=\{a, b, c, d\}$
$\mathrm{n}(\mathrm{K})=4$
2. Given that set $\mathrm{R}=\mathrm{Pm} \mathrm{n}$

How many members are in set R ?

$$
R=\{p, m, n,\}
$$

There are 3 elements in set R. or $n(R)=3$

Exercise 1e;

1. If set $P=\{1,2,3,4,5,6,7\}$.Find $n(P)$
2. Given that $D=\{a, e, I, o, u\}$. How many elements are in set D ?
3. Set $Y=\{h, m, j, h, r, i\}$. Find $n(Y)$.
4. If set $W=\{e, f, g, h\}$. What is $n(W)$?
5.

INTERSECTING SETS " \cap "

$>$ Intersecting sets are sets with common members or elements.

Example:-

1. Set $F=\{e, a, r$,$\} and set G=\{1, e, a, n\}$
$F=\{$ (a) $r\}$
$G=\{1$ (e) $n\}$
Common members $=\{\mathrm{e}, \mathrm{a}\}$
$>$ So set F and set G is intersection sets.

$$
F \cap G=\{e, a\}
$$

- Common members are written only once.

Example 2.

Set $A=\{d, i, g$ \}and set $B=\{d, o n, e\}$

$$
A=\{g, i, \theta\}
$$

$$
\mathrm{B}=\{\mathrm{C}) \mathrm{o}, \mathrm{n}, \mathrm{e}\}
$$

$A \cap B=\{d\}$

Exercise 1f;

1. If set $A=\{1,2,3,4,5\}$ and set $B=\{2,4,6,8\}$. Find $A \cap B$.
2. Given that $P=\{a, e, I, o, u\}$ and $Q=\{a, b, c, d\}$. What is $P \cap Q$?
3. Set $W=\{0, p q, r, s\}$ and set $R=\{m, n, o, p\}$. List down all the elements of set $W \cap R$.
4. $M=\{b, o, y, s\}$ and $N=\{c, a, m, b, s\}$ List down all the elements of set $M \cap N$.

Finding the number of elements in intersection sets.

Example 1

$$
\begin{aligned}
& M=\{a, b, c, d, e\} \text { and } N=\{a, e, i, o, u\} . \text { Find } n(M \cap N) \\
& M=\{a, b, c, d, \operatorname{Ce}\} \\
& N=\{0, i, o, u\} \\
& M \cap N=\{a, e\} \\
& \\
& n(M \cap N)=2
\end{aligned}
$$

Example 2

Set $A=\{d, i, g\}$ and set $B=\{d, o n, e\}$. How many members are in set $A \cap B$

$$
\begin{aligned}
& A=\{g, i, G\} \\
& B=\{@) o, n, e\} \\
& A \cap B=\{d\}
\end{aligned}
$$

There is one member in set $\mathrm{A} \cap \mathrm{B}$.
OR $\mathbf{n}(\mathbf{A} \cap B)=1$.

Exercise 1g;

1. If set $A=\{1,2,3,4,5\}$ and set $B=\{2,4,6,8\}$. Find $n(A \cap B)$.
2. Given that $P=\{a, e, I, o, u\}$ and $Q=\{a, b, c, d\}$. What is $n(P \cap Q)$?
3. Set $W=\{0, p q, r, s\}$ and set $R=\{m, n, o, p\}$. How many elements are in $W \cap R$?.
4. $M=\{b, o, y, s\}$ and $N=\{c, a, m, b, s\}$ How many elements are in $M \cap N$?.
5.

UNION SET " \cup "

A Union set is a set with two or more sets put together.
$>$ In a union set a member is written once.

Example; 1

Given that $W=\{1,2,3\}$ and set $Z=\{x, y, z\}$. Find $W \cup Z$

$$
\begin{array}{r}
\text { Set } W \text { Union set } Z=\{1,2,3, x, y, z\} \\
W \cup Z=\{1,2,3, x, y, z\}
\end{array}
$$

Example;2

Set $F=\{c, a, r, e, s\}$ and $G=\{c, o, n, e, s\}$. List down all the elements of set $F \cup G$

$$
\begin{aligned}
& \mathrm{F}=\{\phi, \mathrm{a}, \mathrm{r}, \notin, \not, \phi\} \\
& \mathrm{G}=\{\phi, \mathrm{o}, \mathrm{n}, \notin, \notin\}
\end{aligned}
$$

$$
F \cup G=\{c, e, a, r, s, o, n\}
$$

Exercise 1 h

1. If set $D=\{1,2,3,4,5\}$ and set $C=\{2,4,6,8\}$. Find (D CC).
2. Given that $\mathrm{P}=\{\mathrm{a}, \mathrm{e}, \mathrm{I}, \mathrm{o}, \mathrm{u}\}$ and $\mathrm{Q}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$. What is $(\mathrm{P} \cup \mathrm{Q})$?
3. Set $S=\{0, p q, r, s\}$ and set $T=\{m, n, o, p\}$. List down all the elements of set ($S \cup T$)
4. $M=\{b, o, y, s\}$ and $N=\{c, a, m, b, s\}$ List down all the elements of set $(M \cup N)$.
5.

Finding the number of elements in a Union set.

Example;

Set $F=\{c, a, r, e, s\}$ and $G=\{c, o, n, e, s\}$. Find $n(F \cup G)$

$$
\begin{gathered}
\mathrm{F}=\{\phi, \mathrm{a}, \mathrm{r}, \notin, \notin\} \\
\mathrm{G}=\{\phi, \mathrm{o}, \mathrm{n}, \notin, \notin\} \\
\mathrm{F} \cup \mathrm{G}=\{\mathrm{c}, \mathrm{e}, \mathrm{a}, \mathrm{r}, \mathrm{~s}, \mathrm{o}, \mathrm{n}\} \\
\mathrm{n}(\mathrm{~F} \cup G)=7 .
\end{gathered}
$$

Exercise 1i

1. If set $D=\{1,2,3,4,5\}$ and set $C=\{2,4,6,8\}$. Find $n(D \cup C)$.
2. Given that $P=\{a, e, I, o, u\}$ and $Q=\{a, b, c, d\}$. What is $n(P \cup Q)$?
3. Set $\mathrm{W}=\{\mathrm{o}, \mathrm{pq}, \mathrm{r}, \mathrm{s}\}$ and set $\mathrm{R}=\{\mathrm{m}, \mathrm{n}, \mathrm{o}, \mathrm{p}\}$. How many elements are in $\mathrm{W} \cup \mathrm{R}$?
4. $M=\{b, o, y, s\}$ and $N=\{c, a, m, b, s\}$ How many members are in $M \cup N$?.
5.

Revision

Name the following set symbols;

1. = ;
2. \neq
\qquad
3. $\leftrightarrow ;$ \qquad
4. \varnothing; \qquad
5. \in; Is a member of or an element of
6. $\cup ;$
7. Is not a member of \notin
8. Number of members in set P

Shading regions on a Venn diagram

Set B

$A \cup B$

Using Venn diagrams to solve set problems.

Example 1 :-

Study the Venn diagram below and answer the questions that follow;

a) List down all the elements of set A. set $A=\{a, b, c, d\}$
b) List the members of set B.

Set $B=\{d, e, f\}$
c) Find; i) $\mathrm{A} \cap \mathrm{B}$.
ii) $A \cup B$.
$A \cap B=\{d\}$
$A \cup B=\{a, b, c, d, e, f\}$

Example 2.

Study the Venn diagram below and use it to answer the questions that follow;

$$
\begin{array}{lll}
\mathrm{J} & \mathrm{~K} & \text { a) Find } \mathrm{n}(\mathrm{~J})
\end{array}
$$

$$
\begin{aligned}
& \text { Set J}=\{0,1,2,3,4\} \\
& \boldsymbol{n}(\mathrm{J})=5
\end{aligned}
$$

b) How many members are in set K?

Set $K=\{0,4,5,6\}$
There are 4 elements in set K.
OR; $n(K)=4$

$$
\begin{array}{ll}
\text { c) } n(J \cap K) . & \text { d) } \begin{array}{l}
\text { List down all the elements in set } J \cup K . \\
J \cap K=\{0,4\}
\end{array} \\
\mathrm{J} \cup \mathrm{~J} \cup K=\{0,1,2,3,4,5,6\} .
\end{array}
$$

Exercise 1]

a) List down all the elements of set P.
b) Find PUQ
c) How many members are in set $P \cap Q$
d) What is $n(Q)$?

FILLING IN VENN DIAGRAMS

Example 1:-

Given that Set $A=\{a, e, i, o, u\}$ and set $B=\{a, b, c, d$,
a) Fill in the Venn diagram below using set A and B

Note; Start with the intersection part.

b) How many members are in set A?
c) , Find;
i) $n(B)$
ii) $A \cap B$
ii) $n(A \cup B)$

Exercise 1K

1. If set $M=\{1,2,3,4,5\}$ and set $N=\{0,2,4\}$
a) Fill in the Venn diagram using set M and N.

b) Find; $n(M)$.
c) How many elements are in set N ?
d) $n(M \cap N)$
e) $n(M \cup N)$

TOPICAL TEST 1:

1. Set $F=\{$ flies as big as a cow $\}$. Name set F.
2. Draw a set of 4 trees.
3. Shade $P \cup Q$ in the diagram below:

4. Name the following set symbols; a) $\}$
b) $\leftrightarrow \quad$ c) \neq
5. Given that set $F=\{0,2,4,6,8\}$.Find $n(F)$
6. If set $\mathrm{Q}=\{\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}, \mathrm{u}\}$ and set $\mathrm{R}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$. a)How many members are in set $\mathrm{Q} \cap \mathrm{R}$? b)Find QUR
7. Use: $=, \neq$ or \varnothing to complete the following.
a) Set $\mathrm{H}=\{1,2,3,4,5\}$ \qquad Set $\mathrm{G}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$
b) A set of men who are pregnant
c) Set W

\qquad Set R

8. Study the Venn diagram below and answer the questions that follow;

a) Find; A U B
b) How many members are in $A n B$?
c) Find; $\mathrm{n}(\mathrm{B})$
d) List down all the elements of set A.
9. Given that set $Q=\{a, e, I, o, u\}$ and set $R=\{a, b, c, d, e\}$.
a. Complete the Venn diagram below using set Q and R above

NUMERATION SYSTEMS AND PLACE VALUES.

PLACE VALUES.

ONES, TENS, HUNDREDS, THOUSANDS:

EXAMPLE:
What is the place value of 3 in the 4325 ?

THOUSANDS	HUNDREDS	TENS	ONES
4	3	2	5

The place value of 3 in the number 4325 is Hundreds.

Exercises 2a

Write the place values of the underlined digits.
a) $89 \underline{21}$
b) 3367
c) $\mathbf{1} 02$
d) $64 \underline{9}$
e) $\underline{5} 720$

Exercise 2b

Complete the following:
a) $4675=$ _thousands,_hundreds, __tens,__ones.
b) $904=$ _hundreds __tens __ones.
c) $4341=$ thousands__hundreds__tens__ones.
d) $3046=$ thousands__hundreds_tens _ones.
e) $5890=$ _thousands _hundreds_tens_ones.

USING AN ABACUS

FINDING NUMBERS SHOWN ON THE ABACUS:

Example 1.

What number is shown on the abacus?

Exercises 2 c

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

What numbers have been shown on the abacus ?
a) $\mathrm{TH} \mathrm{H} \quad \mathrm{T}$

0
b) Th
H
T O
c) Th
H
d) H T O

REPRESENTING NUMBERS ON THE ABACUS.

Example;
Show 3021 on the abacus.

Exercises 2 d

Show the following numbers on the abacus.
a) 656
b) 3601
c) 210
d)5372
e) 7521 f) 426.

FINDING THE TOTAL VALUES OF NUMBERS.

Example 1:-

Find the total value of 4 in the number:

a) 148 .

b) 4580

H T O
Th H TO
148

$$
\longrightarrow 4 \text { tens }=4 \times 10
$$

$$
=4000 .
$$

Exercise 2e:

1. Calculate the value of the underlined digits :
a) 5642
b) 6932
c) 1064 d) 978
e) 2108
f) 5497

ADDITION OF VALUES:

Example:-

7 tens + 5ones=

$$
\begin{aligned}
& =(7 \times 10)+(5 \times 1) \\
& =70+5 \\
& =75 .
\end{aligned}
$$

Exercise $2 f$

Let us workout the following :

1. 2tens plus 2 ones. 2) 5hundreds +4 tens
2. 6thousands +6hundreds.
3. 8hundreds +6tens +7ones.

5 Bthousands and 3tens.

Subtraction of Values

Example

1. 5 tens - 3tens =

$$
\begin{aligned}
& =(5 \times 10)-(3 \times 10) \\
& =50-30 \\
& =20 .
\end{aligned}
$$

Multipulication of values

Example

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

EXERCISE 2g

Workout the following :

1. 4tens -2tens. 2) 3hundreds minus 1hundred 3. 8thousands -7thousands.

Workout the following;

$$
\begin{aligned}
& =(4 \times 10) \times(6 \times 1) \\
& =40 \times 6 \\
& =240 .
\end{aligned}
$$

1. 2tens \times 3ones 2) 4hundreds $\times 4$ 4ones.
2. 8tens x2 4) 5thousands x3

WRITING IN WORDS.

Example:-

Write 6427 in words.
TH H units
647
$6000=$ Six thousand.
$400=$ Four hundred.
27= Twenty-seven.
$\therefore 6427=$ Six thousand four hundred twenty seven.

Writing in figures
 Example:-

Write two thousand four hundred ten in figures.
Two thousand $=2000$
Four hundred $=400$
Ten

$$
=\frac{+10}{\underline{2410}}
$$

Exercise 2i.

Write the following in words

a) 435
b) 8648
c)2001 d)6500 e)4095
f)8103
$\underline{\underline{2410}}$

Exercise 2i
 Write the following in figures.
 1. Three thousand, twenty two.
 2. Five hundred five.
 3.Two thousand, two hundred two.
 4. Six thousand, four hundred ninety.
 5. Nine thousand nineteen.

WRITING NUMBERS IN EXPANDED FORM

Example:-
Expand 312
H T O

$$
312
$$

312 $=(3$ hundreds $)+(1$ tens $)+(2$ Ones $)$ $=(3 \times 100)+(1 \times 10)+(2 \times 1)$
Method II
Exercise 2K
Write the following in expanded form

1. 275
2) 7856
3)1002
4)5471
5)8509

Note: Write from down upwards.

$$
312=300+10+2
$$

2. Expand 5748 using values

$$
\begin{array}{rl}
\text { TH H T O } \\
5 & 748 \\
5748 & =(5 \text { thousands })+(7 \text { hundreds })+(4 \text { tens })+(8 \text { ones }) \\
& =(5 \times 1000)+(7 \times 100)+(4 \times 10)+(8 \times 1) \\
& =5000+700+40+8 .
\end{array}
$$

Method II
TH H T O
Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

FINDING OUT THE EXPANDED NUMBER

Example:-

1. Which number is shown by this expansion; $7000+40+8$?
$\left.\begin{array}{ccc}\mathrm{TH} & \mathrm{H} & \mathrm{T} \\ \hline & \mathrm{O} \\ 7 & 0 & 0\end{array}\right)$

2 Which number has been expanded to give;

$$
(4 \times 1000)+(7 \times 100)+(5 \times 10)+(6 \times 1) ?
$$

$$
4 \times 1000=4000
$$

$$
\begin{gathered}
7 \times 100= \\
5 \times 10= \\
6 \times 1=\frac{7 \downarrow \downarrow 6}{4750} \\
\underline{4756}
\end{gathered}
$$

Exercise 2L

What number has been expanded to give:

1. $6000+60+6$
2). $(2 \times 100)+(3 \times 10)+(8 \times 1)$
3)7000 $+300+50+6$
2. $(9 \times 1000)+(2 \times 100)+(3 \times 10)$
5). $4000+500+60+2$

ROMAN NUMERALS

- Major Roman numerals are:-	
V	X L
15	1050
The Hindu -Arabic numerals are ; $0,1,2,3,4,5,6,7,8$ and 9	
$2=1+1$	$3=1+1+1$
$=\mathrm{I}+\mathrm{I}$	= $\mathrm{I}+\mathrm{I}+\mathrm{I}$
= II	= III

$>\quad$ Roman numerals got by adding to 5 are 6, 7, 8

- The Roman numeral got by subtracting are; . 4, 9, 40

$$
\begin{array}{rlr}
4=5-1 & 9=10-1 \\
=\mathrm{V}-\mathrm{I} & =\mathrm{X}-\mathrm{I} \\
=\mathrm{IV} & =I X
\end{array}
$$

NOTE;

- Roman numerals which can never be repeated are V, L
- Roman numerals are not repeated more than three times.

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

Expressing Hindu Arabic numeral as Roman Numerals

Example:- (Expand and change to Roman numerals.)

1. $19=10+9 \mathrm{~s} / \mathrm{w}$
$=X+I X 10$ $=$ XIX $\frac{+9}{19}$
2. $36=30+6$
$=\mathrm{XXX}+\mathrm{VI}$
$=\mathrm{XXXVI}$

Exercise 2m

Write the following as Roman numerals:

1. a) 8
b) 15
c) 24
d) 39
e) 12
f)28
2. Ann is 14 years old. Write her age in Roman numerals.
3. John has 26 cows. How many cows does he have in Roman numerals?

Changing Roman numerals to Hindu Arabic numerals

Note; Expand and change to Hindu Arabic numerals
Example: -

$$
\begin{aligned}
& \text { XIX }=X+I X \quad \text { or } / w \quad \text { or } \quad= \\
& \begin{array}{ll}
= & 10+9 \\
= & 19
\end{array} \\
& 10 \quad \mathrm{IX}=\underline{+9} \\
& +9 \quad \equiv 19 \text { Ans. } \\
& 19 \\
& \text { or } \\
& X=10 \\
& 19
\end{aligned}
$$

Exercise 2n

Change the following to Hindu-Arabic numerals.

1. a) XXII
b) XIV
c) XXXV
d) XVIII
2. Jane is XI years old. Write her age in Hindu-Arabic numerals.
3. Henry weighs XXXVI kilograms. Find his age in Hindu-Arabic numerals.

TOPICAL REVISION.

1. a) Write ;Three thousand three in figures.
b) Write 24 in Roman numerals.
2. Complete; $2436=$ _thousands_hundreds_tens _ones.
3. What number has been expanded to give; $4000+400+4$?
4. John is XXXVII years old. Write his age in Hindu-Arabic Numerals.
5. Workout; a) 4tens and 3ones. b) 6hundreds -4hundreds. c) 2thousands $x 3$
6. Given the number; 6390.

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211
a) Write the place value of 3 in the number above.
b) Write the digit that is in the place of tens in the number above.
c) Calculate the value of 6 in the number above.
d) Express the above number in expanded notation.
e) Write the above number in words.

OPERATIONS ON NUMBERS;

ADDITION;

ADDI WITHOUT CARRYING.

Example: -

1. 542
2. 6241
$+22$
564

$$
\begin{array}{r}
+3333 \\
\hline 9574 \\
\hline
\end{array}
$$

3. $15+22+10$
15
22
$\frac{10}{47}$

Exercise 3a
Workout the following;

WORD PROBLEMS INVOLVING ADDITION WITHOUT REGROUPING.

KEY WORDS;

Add, sum, total, increase, altogether etc
Exercise 3b.

1) Add $342+56$ 2) Increase 4230 by 432 3) Find the sum of 65 apples and 33 apples.
2) Nancy had 224 cows. Her father gave her 33 more cows. How many cows did she have altogether?
3) What number is 4 more than 96 ?

ADDITION OF 2-DIGIT NUMBERS WITH CARRYING OR RE-GROUPING. Example:-

Exercise 3c
Workout the following;

1. 35
2)

84
3
22
4)
46
5)
75
6) 69
$+6$
$+17$
$+98$
$+44 \quad+17$ $+88$
7. Add $57+87$ 8) Increase 36 by 99
9) What number is 16 more than 27?
10)Mary had 47 books. She bought 23 more books. How many books does she have in total?

ADDITION OF 3-DIGIT NUMBERS WITH CARRYING OR RE-GROUPING.

Example:-

Exercise 3c
Workout the following;
1.154
2) 6583$) 927$
4) 580
5) 417
6) 563
$+36 \pm 222+88+237$
$+758 \quad+559$
7. In Kabojja Junior School, there are 354 boys and 478 girls. How many pupils are there altogether?
8. A farmer collected 873 bags of rice in June and 59 bags in July. How many bags did the farmer collect in the two months.
9. In a certain village, there are 752 men and 648 women. Find the total number of people in that village. 10. Add 529 mangoes to 865 mangoes.

ADDITION OF 4-DIGIT NUMBERS WITH CARRYING OR RE-GROUPING.

Example:-

Exercise 3d

Workout the following;

SUBTRACTION

SUBTRACTION WITHOUT BORROWING OR RE-GROUPING.

Example:-

1. 45
2) 59
3) 672
4) 323512354
5) 8592
$\frac{-3}{42}$ $\begin{array}{r}-24 \\ 35 \\ \hline\end{array}$ $\frac{-60}{612}$

$-\frac{-7450}{1142}$

Exercise 3e
Workout the following;

WORD PROBLEMS
 Key words

Decrease, minus, remove, reduce, subtract, difference, take away, Less than.

EXAMPLE:

1. Subtract 24 from 648.

648
$\frac{-24}{622}$
2) What number is 15 less than 79 ?

79
$-\frac{15}{64}$

Exercise 3 f

Workout the following;

1. What is the difference between 643 and 231? 2) Decrease 5489 by 213 . 3) What is 83 take away 40 ?
2. Sarah had 25 apples. If she ate 20apples, How many apples did she remain with?
3. Bob had sh. 300 and used sh. 200 to buy a pen, How much did he remain with?
4. In a certain school, there are 890 pupils. If there are 350 boys, how many girls are there?
5. Winny is 6 years younger than Jane. If Jane is 9 years old. a) How old is Winny?
b) How old was lane 4 years ago?
6. Subtract 56 from 97 9) Reduce 763 by 222

SUBTRACTION OF 2 DIGIT NUMBERS WITH BORROWING;

Example:-

Exercise 3 g
Subtract the following.

1. 50
2) 72
3) 44
-17
4) 23
5) 86
-14 -68
6) 31
$-31 \quad-5 \quad 5$
$-2 \quad 9$
7. Reduce $\overline { 8 2 \text { by } 4 7 . ~ } 8 \longdiv { \text { Subtract } } \overline { 3 4 \text { from } } 8 0$ 9) What number is 14 less than 32
8. A farmer had 61 cows, if 19 of them died. How many cows remained?
9. In Primary three class, there are 95 pupils. If 36 of them are girls, how many boys are there?

SUBTRACTION OF 3- DIGIT NUMBERS WITH BORROWING;

Example:-

$\begin{array}{l}5-7 \text { is impossible so borrow } 1 \text { ten from } \\ \text { 6tens and add it to } 5.505+10=15 . \\ \text { Therefore } 15-7=8\end{array}$

$\begin{array}{l}5-7 \text { is impossible so borrow } 1 \text { ten from } \\ \text { 6tens and add it to } 5.505+10=15 . \\ \text { Therefore } 15-7=8\end{array}$

$\begin{array}{l}5-7 \text { is impossible so borrow } 1 \text { ten from } \\ \text { 6tens and add it to } 5.505+10=15 . \\ \text { Therefore } 15-7=8\end{array}$

Exercise 3 h
Subtract the following:

Exercise 3 h

SUBTRACTION OF 4- DIGIT NUMBERS WITH BORROWING;

Example 1:

3121110
4329
-651
3669

MULTIPLICATION

Multiplication is repeated addition.

Meaning of multiplication.

Example;

4×6 means four groups of six
$4 \times 6=6+6+6+6$

$$
=24
$$

Exercise.

SIMPLE MULTIPLICATION

Example:-

a)
$3 \times 2=6$
b) $9 \times 7=63$

Exercise.4b

WORD PROBLEMS;

Key words.

Multiply, times, product, multiple.

Example:-

A spider has 8 legs. How many legs do 3 spiders have?

One spider has 8 legs. 3 spiders have (8×3)legs.

$$
=24 \text { legs. }
$$

Exercise 4c

Multiplication 2 by 1 digits without carrying:

a) 13
b) $\quad 20$
$\underline{\times 3}$ $\times 4$
39 80

Powered by: -iToschool- | www.schoolporto.com | System developed by: luke 0752697211

Exercise 4d

WORD PROBLEMS;

Example:-

One year has 12 months. How many months are there in 4 years?
1 year $\rightarrow 12$ months.
4 years $\longrightarrow(12 \times 4)$ months
$=48$ months.

Exercise 4e

Multiplication of 2 by 1 digit with carrying:

Examples:

1.

1
2

$\times 3$
$\frac{7}{7} 2$
12
ltiplying $\mathbf{3}$ by $\mathbf{1}$ digit numbers.
amples

Examples

1. $1 \stackrel{1}{2} 3$
$\begin{array}{r}\times \quad 4 \\ \hline 492 \\ \hline 12\end{array}$
2. $2 \stackrel{1}{3} 4$
$\begin{array}{r}23 \\ \times \quad 3 \\ \hline 70 \quad 2 \\ \hline 1012\end{array}$

Multiplying 4 by 1 digit numbers.
Examples

1. | 1 | 1 | 1 | 3 |
| ---: | ---: | ---: | ---: |
| \times | | 5 | |
| 5 | 5 | 1 | 5 |
| | | | 15 |
2. | 1101 | | |
| ---: | ---: | ---: |
| $\times 0$ | 5 | 7 |
| \times | | 2 |
| 211 | 1 | 4 |
| | 11 | 14 |

DIVISION;

SIMPLE DIVISION WITHOUT A REMAINDER

Example:-
a) $6 \div 6=1$
b) $8 \div 2=4$

Exercise 5a
Using long division

Example:-

Exercise 5b

Word problems.

Key words.

Share, divide.

Example;

1. Share 8 books among 4 pupils. How many does each child get? 8books $\div 4=2$ books.
2. How many groups of three are in 6 ?

Division involving 2-digit numbers.

Example 1

Division involving 3 -digit numbers.

 Example 1

SIMPLE DIVISION WITH A REMAINDER Examples

a) $5 \div 2=2 r 1$
b) $7 \div 3=2 r 1$

Division with a remainder using long division.

Examples

Exercise. 6c page 73.
WORD PROBLEMS
Example.
Share 23 sweets between 2 boys.
DIVISION INVOLVING COMPLEX PROBLEMS.
Examples:
1.

2.

Exercise. 6b page 73 , Ex 6d pg74 ,Ex $6 f$ pg75.

Word problems.

Example;
Share 36 pens among 9 pupils.
Exercise. 6 g page 76-77.

Division through factor 10

Example

$$
\begin{aligned}
30 \div 10 & =3 \varnothing \div 1 \varnothing \\
& =3 \div 1 \\
& =3 \text { Ans. }
\end{aligned}
$$

NUMBER PATTERNS AND SEQUENCE

Types of numbers

1. Whole numbers.

Whole numbers start from $0 . . .$. e.g. $0,1,2,3,4,5,6,7,8,9,10,11 . ~ . ~$.
2. Counting numbers.

Counting numbers start from 1...e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, $11 \ldots$
Exercise;
3. EVEN NUMBERS ;

An even number is a number that when divided by 2 leave a remainder as 0 . e.g. 0,2,4,6,8,,10,12..........

Key words used are;_between, up to, from.
Example
Even numbers from 0 up to 20.
\{0,2,4,6,8,10,12,14,16,18,20\}

Exercise;

4. ODD NUMBERS;

These are numbers which when divided by 2 leaves a remainder as 1 .

E.g. 1, 3, 5, 7, 9, 11 . . .

Exercise;

COMPLETING SEQUENCES.

Example;

$+2+2+2$

Exercise;

MULTIPLES;

A multiple is a product of two numbers.
Multiples of a number when divided by that number leave no remainder.

key words used are ;

Less than, between, up to and from
e.g. M_{2} less than 10 .
$2 \times 1=2$
$2 \times 2=4$
$2 \times 3=6$
$2 \times 4=8$
$2 \times 5=10$
$\mathrm{M}_{2}=\{2,4,6,8\}$
Exercise;
FACTORS;
Factors are numbers that give rise to multiples Or products.
A number that divides another exactly is called a FACTOR.
_key words used are;
Less than, between, up to and from

$\mathrm{F}_{8}=\{1,2,4,8\}$
Exercise;

FORMING NUMBERS FROM DIGITS.

Forming the smallest number from given digits

$$
\text { Example } \begin{aligned}
8,6,7 & =6,7,8 \\
& =678 .
\end{aligned}
$$

Forming the bigqest number from given digits

Example;

$$
\begin{aligned}
2,0,6,4 & =6,4,2,0 \\
& =6420
\end{aligned}
$$

NB ; All the answers do not have commas.

Exercise;

FRACTIONS

A fraction is a part of a whole number.

PARTS OF FRACTIONS;

> Numerator is the top number of a fraction.
> Denominator is the bottom number of a fraction.
Names of fractions
Writing and reading fractions
Example:-
$\underline{1} \rightarrow$ a half
2

Exercise;
TYPES OF FRACTIONS
Proper fractions, Improper fractions, mixed fractions, Equivalent fractions, Decimal fractions

Naming the shaded and unshaded fractions

Example: -
a)

Shaded $=1 / 2$
Un shaded $=1 / 2$
Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

Exercise 1;

Write the shaded and unshaded parts.

Exercise 2;

Draw and shade the following: -

1. $1 / 4$,
2. $1 / 2$,
3. $3 / 4$.

Comparing fractions:-
Using greater than (>) less than (<) and is equal to " ="

Exercise;

Fractions of wholes.

Example:-

$$
\begin{aligned}
\frac{1}{2} \text { of } 6= & \frac{1}{2} \times 6 \\
& =(1 \times 6) \div 2 \\
& =6 \div 2 \\
& =3
\end{aligned}
$$

Exercise;

ADDITION OF FRACTIONS

Addition with the same denominators

Example:-
a) $\underline{1}+\underline{1}=\underline{1+1}$
333
$=\underline{2}$
3
b) $\quad \frac{3}{8}+\frac{2}{8}=\frac{3+2}{8}$
c) $\begin{aligned} \frac{2}{5}+\frac{3}{5} & =\frac{2+3}{5} \\ & =\frac{5}{5} \\ & =1\end{aligned}$

WORD PROBLEMS.

1. Ann ate $\underline{2}$ of a cake and Mercy ate $\underline{1}$ of the same cake.

$$
5
$$

What fraction of the cake did two girls eat?
Ann Mary

$$
\frac{2}{5}+\frac{1}{5}=\frac{2+1}{5}=\frac{3}{5} \text { of a cake. }
$$

Exercise;

Subtraction of fractions
a) $\frac{4}{5}-\frac{1}{5}=\frac{4-1}{5}$
$=\frac{3}{5}$
b) $\frac{9}{8}-\frac{5}{8}=\frac{9-5}{8}$
$=\frac{4}{8}$

WORD PROBLEMS.

David had $\underline{7}$ of a cake, he ate $\underline{5}$ of it. What fraction of the cake remained?
9
9

He had - ate = remained.
$\frac{7}{9}-\frac{5}{9}=\frac{7-5}{9}=\frac{2}{9}$.

Exercise;

Subtraction of fractions from one whole (Pr. Sch. MTC. Bk. 3 pg. 104)
a) $1-3 / 4=\frac{4}{4}-\frac{3}{4}=\frac{4-3}{4}=\frac{1}{4}$
b) $1-1 / 2=\frac{2}{2}-\frac{1}{2}=\frac{2-1}{2}=\frac{1}{2}$

Exercise;

WORD PROBLEMS.

Mary had a mangoe, she ate $3 / 4$ of it. What fraction was left?
$1-3 / 4=\frac{4}{4}-\frac{3}{4}=\frac{4-3}{4}=\frac{1}{4}$
She remained with $1 / 4$

Exercise;

DECIMAL FRACTIONS

0

Exercise;

Addition of decimal fractions.

Example; $4+0.5=0.4$
$+0.5$
0.9 Ans

Word problems in addition

Deco ate 0.2 of a cake in the morning and 0.7 of it in the evening.
What decimal fraction did Deco eat altogether?
Morning 0.2
Evening +0.7
Total $\quad 0.9$
\therefore Deco ate 0.9 altogether
Exercise;

Subtraction of decimal fractions with borrowing

$$
\begin{aligned}
5.4-1.8= & 5.4 \\
& -1.8 \\
& =4.6 \text { Ans. }
\end{aligned}
$$

Word problems on subtraction

Ann bought 2.8 meters of cloth. She used 1.5 meters for a skirt.
How many meters of cloth did she have un used?
Ann bought 2.8 m
She used - 1.5 m
Left $\quad 1.3 \mathrm{~m}$ Ans.
Exercise;

ALGEBRA

Collecting like terms.

Adding like terms .

Example 1:
a) 2 cats +2 goats $=2$ cats +2 goats
b) $\quad 4$ stones +3 stones $=7$ stones.

Example 2

a) $a+a+a=3 a$
b) $e+r+r+e+r=e+e+r+r+r$ $=2 e+3 r$

Exercise;

SUBTRACTING LIKE-TERMS.

EXAMPLES.

1. \quad 4books $-3 b o o k s=1 b o o k$.
2. $6 a-3 a=3 a$
3. $X-y=x-y$

Exercise;

More about like terms

Example;

1. $2 x+3 y-x+2 y$

Exercise;

EQUATIONS

Both sides must balance / equal
Finding the unknown by subtraction.
1.

$\square+4$	$=8$
$\square+4-4$	$=8-4$
	$=4$

2. $\quad h+2$
$=6$
$h+2-2=6-2$
$\mathrm{h}=4$

Word problems.

Example

1. Kato had hens in his farm. He was given 10 more hens. He now has 15 hens. How many hens had Kato at first?
Let the number of hens he had at first be h
$h+10=15$
$h+10-10=15-10$
$\mathrm{h}=5$
\therefore Kato had 5 hens at first.
Finding the unknown by addition.
2. $\square \quad-4 \quad=9$

$$
=13
$$

2. $W-3=6$
$W-3+3=6+3$
$\mathbf{W}=9$

Word problems.

1. Father had books in his bag. He gave me 5 books and he remained with 7 books. How many books
did he have at first?
Let the number of books be b
$b-5=7$ (an equation)
b-5 + $5=7+5$
b $\quad=12$
\therefore My father had 12 books at first.

Finding the unknown by dividing.

1.

$$
\text { X } 5=10
$$

$$
=10 \div 5
$$

$$
=2
$$

2. $\mathrm{P} X 2=8$
$P=8 \div 2$
$P=4$

Word problems.

1. When 9 multiply a number the result is 63 . What is the number?
$y \times 9=63$
$y \times 9 \div 9=63 \div 9$
$Y \quad=7$
\therefore The number is 7 .
Finding the unknown by multiplication.
2. $\square \div 2=4$
\square
$=4 \mathrm{X} 2$
$\square \quad=8$
3. $g \div 3=6$
g $=6 \times 3$
g $=18$

Word problems.

2. Adyebo had apples in the basket. He divided them equally between his 2 children. Each child got 4 apples. How many apples had Adyebo at first? Let the number of apples be k.
$W \div 2=4$
$W \div 2 \times 2=4 \times 2$
$\mathrm{W} \quad=8$
\therefore Adyebo had 8 apples at first.

GEOMETRY

SHAPES

PLANE SHAPES

Plane shapes are:-
Squares, rectangles, triangles, kite, circles, oval, semi-circle, parallelogram Trapezium, Rhombus and other polygons with more than 4 sides.

POLYGONS

A polygon is any figure that is closed and has sides.

Names of polygons

1. A triangle - Has 3 sides. Examples;

2 A QUADRILATERAL.

The 4-sided polygon is called a quadrilateral.
Types of quadrilaterals
a) Square

- All the sides are equal.
- All the angles are equal.

- Opposite sides are parallel.
b) Rectangle
- Opposite sides are equal and parallel.
- Opposite angles are equal.
c) Rhombus
- All sides are equal.
- Opposite sides are parallel.

- Opposite angles are equal.
d) Parallelogram
d) - Opposite sides are equal and parallel

e) Trapezium

f) A kite

SOLID SHAPES

1. A cube Have all sides equal.

2. A cuboid

Has a rectangular face.

Naming parts of solid figures.

A CUBOID / A CUBE

- Have 6 faces.
- Have 8 vertices.
- Have 12 edges.

3. A cone

4. Cylinder

5. Oval

6. Triangular pyramid

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

8. Rectangular pyramid

TERM III
 GRAPHS AND INTERPRETATION OF INFORMATION

Types of graphs.

1. Column graphs and bar graphs.
2. Picture / pictographs.

Picture / pictographs.

Example

1. If $*$ shows 2 stars. How many stars will $* * * * *$ show?

* $=2$ stars
$* * * * *=5 \times 2$ stars
$=10$ stars.
Exercise;

1. If ${ }^{*}$ shows 4 stars. How many picture stars will show 12 stars?

4 stars $\quad=\quad$ *
12 stars $=12 \div 4$ picture stars
$=3$ picture stars.
Exercise;

USING A PICTURE GRAPH.

The table below shows the number of flowers picked by six girls. Study it and answer the questions that follow;

NAME	NUMBER OF FLOWERS.
JANE	
JULIET	
JALIA	䍃点
JINELLE	
JACKLYNE	
JASPA	

QUESTIONS.

1. Who picked the highest number of flowers?
2. Which two pupils picked the same number of flowers?
3. How many more flowers did Jane pick than Jalia?
4. If each flower is sold at sh. 300 . how much money will Juliet get after selling all her flowers.
5. Calculate the total number of flowers collected by all the girls.

REPRESENTING THE GIVEN INFORMATION ON A PICTO-GRAPH.

The list below shows the number of boxes of chalk given to different classes at Kabojja Junior School. Study it and answer the questions that follow.

CLASS

P. 1
P. 2
P. 3
P. 4
P. 5

NUMBER OF BOXES.
5 boxes.
2boxes
8boxes
4boxes
2boxes.

Questions.

1. Draw a picto-graph to represent the above information.
2. Which class got the highest number of boxes?
3. Which two classes got the same number of boxes?
4. Calculate the total number of boxes that were given to all the classes.

BAR GRAPHS

Study the graph below and the questions that follow;

1. How many more books did P. 4 get than P.3?
2. How many books did P. 1 and P. 2 get altogether?
3. Which classes got the same number of books?
4. How many more books did P. 5 get than P.6?
5. Calculate the total number of books that were given to all the classes.

MEASUREMENT (MEASURES)

LENGTH

1. Length is the distance between two points.
2. The standard Unit used to measure length is Metre.
3. Other units include; Kilometre (Km), Hectometre (Hm), Decametre(Dm), metre(m), decimeter(dm), centimeter(cm), millimeter(mm)

Km	Hm	Dm	m	$d m$	cm	$m m$
1	0	0	0	0	0	0
	1	0	0	0	0	0
		1	0	0	0	0
			1	0	0	0
				1	0	0
					1	0
$1 \mathrm{Km}=1000 \mathrm{~m}$						
	100 c					

Measuring the length of given objects and writing them in meters and centimeters.
$100 \mathrm{~cm}=1$ metre

1. $\quad 123 \mathrm{~cm}=$ _ 1 m 23 cm
2. $546 \mathrm{~cm}=\ldots \mathrm{m} \ldots \mathrm{cm}$
3. $\quad 754 \mathrm{~cm}=\ldots \mathrm{m} \ldots \mathrm{cm}$
4. $\quad 265 \mathrm{~cm}=\ldots \mathrm{m}$ _ cm

Converting metres (m) to centimeters (cm)
Example:

1. $\quad 4 \mathrm{~m}$
$1 \mathrm{~m}=100 \mathrm{~cm}$
$4 \mathrm{~m}=4 \mathrm{X} 100 \mathrm{~cm}$
$=400 \mathrm{~cm}$
2. $\begin{gathered}13 \mathrm{~m} \\ 1 \mathrm{~m}\end{gathered}=100 \mathrm{~cm}, \begin{aligned} \mathrm{m} \begin{aligned}=13 & \times 100 \mathrm{~cm} \\ & =1300 \mathrm{~cm}\end{aligned}\end{aligned}$

EXERCISE;

Change the following m to cm

Converting centimetres (cm) to metres (m)
Example:

$$
\begin{aligned}
& 300 \mathrm{~cm} 1 . \\
& 100 \mathrm{~cm}=1 \mathrm{~m} \\
& 300 \mathrm{~cm}=(300 \div 100) \mathrm{m} \\
& =3 \mathrm{~m}
\end{aligned}
$$

2. 1000 cm
$100 \mathrm{~cm}=1 \mathrm{~m}$
$1000 \mathrm{~cm}=(1000 \div 100)$

$$
=10 \mathrm{~m}
$$

Exercise; Change the following cm to m
1400 cm 2] 200 cm 3] 5000 cm 4$] 7000 \mathrm{~cm}$ 5] 800 cm

Addition of units of length
Example:

1. $\quad M$

M	$c m$
5	2
+	1
6	7

2. M

3.

KM	M
3	350
+5	420
8	770

EXERCISE12C PG 147

Word problems on addition of units of length

1. Musa is 2 M 15 cm of a sugar cane. Ali ate 3 M 20 cm of a sugar cane. Find the length of sugar cane eaten by Musa and Ali.

	M	cm
Musa ate	2	15
Ali ate	+3	20
Altogether	$\underline{5}$	35

EXERCISE12d PG 148

Subtraction of units of length
Example:

EXERCISE12E PG 149

Word problems on subtraction of units of length

1. A trader had 19 M 50 cm of cloth. He sold 4 M 10 cm of it. What length of cloth was left? $M \quad \mathrm{~cm}$
A trader had 1950

Sold	-4	10
Left	15	40

EXERCISE12e PG 150
Multiplication of units of length
Example:

1. M

32
X $\quad 2$
$6 \quad 4$

	Km
2	120
x	4
8	480

Word Problems on Multiplication of length units.

Example

1. Kato's string 3 M long. Find the length incm.
a)
$1 \mathrm{M}=100 \mathrm{~cm}$
$3 \mathrm{M}=3 \times 100$
$=300 \mathrm{~cm}$

DIVISION OF LENGTH UNITS.

1. Mrs. Kato has 12 M of cloth to be shared among her children. What length will each child get?
$12 M \div 4$
$=3 \mathrm{M}$
\therefore Each child will get 3 M.

POLYGONS

A polygon is a simple closed sided figure

PERIMETER OF POLYGONS.

Perimeter is the total distance around a given shape / figure or object.
1.

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

$$
\begin{aligned}
& \text { Perimeter }=S+S+S \\
& \quad=5 \mathrm{~cm}+4 \mathrm{~cm}+3 \mathrm{~cm} \\
& =12 \mathrm{~cm}
\end{aligned}
$$

2.

\square
6 m
Perimeter $=\mathrm{L}+\mathrm{W}+\mathrm{L}+\mathrm{W}$
$=6 m+5 m+6 m+5 m$
$=22 \mathrm{~m}$
3.

3 cm

Perimeter $=\mathrm{S}+\mathrm{S}+\mathrm{S}+\mathrm{S}$

$$
\begin{aligned}
& =3 \mathrm{~cm}+3 \mathrm{~cm}+3 \mathrm{~cm}+3 \mathrm{~cm} \\
& =12 \mathrm{~cm}
\end{aligned}
$$

AREA OF POLYGONS

Finding area by counting squares

1. How many square tiles can be laid on a floor of a given room?

6 Tiles.

Exercise 13a Pg 152

Finding area by multiplication
We find area of these figures by multiplying the number of squares across (length) by the squares down wards (width)

Formula $=$ (length x width $)$ square units.

down
a cross
a cross x down
3 squares $x 2$ squares
2.

6 cm

$$
\begin{aligned}
& A=L \times w \\
& \quad=6 \times 2 \mathrm{~cm}^{2}
\end{aligned}
$$

(3×2) square units
$=12 \mathrm{~cm}^{2}$
$=6$ square units

Exercise 13d and 13e Pp 155-156

WORD PROBLEMS

1. Length is 5 cm and width is 4 cm

Area $=$ length x width square cm

$$
\begin{aligned}
& =5 \times 4 \mathrm{~cm}^{2} \\
& =20 \mathrm{~cm}^{2}
\end{aligned}
$$

Exercise 13f Pg 157-158

TIME

1. A clock face has two major hands. The hour hand and minute hand. A short hand counts Hours and a long hand counts minutes.
2. 60 minutes make 1 hour.
3. A half an hour is equal to 30 minutes.
4. A quarter an hour is equal to 15 minutes.
5. From 1-minute upto 30 minutes we use "past".
6. More than 30 minutes we use "to".
7. When the minute hand points to 12 we use or read o'clock.
8. When the minute hand points to 3 we use or read a quarter past.
9. When the minute hand points to 6 we use or read a half past.
10. When the minute hand points to 9 we use or read a quarter to.

a) Shaded part we use minutes 'past'.
b) Un shaded part we use minutes 'to'.

Telling time using o^{\prime} clock and a half past.
1.
2.

It is 3 o'clock.

It is a half past $12 o^{\prime}$ clock.
OR 30 min past 12 o'clock.

Exercise 11b pp127-130

Telling time using a quarter past.
Example 1

It is a quarter past 5 o'clock.
OR 15 min past 5 o'clock
Exercise 11e p 131
Telling time using "a quarter to "

Example

It is a quarter to 20^{\prime} clock. OR it is 15 min to 2 o'clock.

Exercise 11g p132

CONVERSIONS.

Changing hours to minutes.

1. Change 9 hours to minutes.

1 hour $=60$ minutes
9 hours $=9 \times 60$ minutes
$=540$ minutes.

Changing minutes to hours.

1. 60 minutes $=1 \mathrm{hr}$

420 minutes $=420 \div 60$ hrs.

$$
=7 \text { hrs. }
$$

Addition and subtraction of time units.

1. Hrs Min

310
$+6 \quad 40$
950 Ans.
2. Hrs Min

- $2 \quad 30$
$2 \quad 15$

Word problems involving addition and subtraction of time units.
CALENDER
January 2001

SUN	MON TUE	WED	THU	FRI	SAT	
	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30	31			

Questions.

1. Write the first day of the month.
2. Write the last day of the week.
3. How many Sundays are in the month?
4. How many Fridays are in the month?

Days of the week are Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, and Sunday.

Questions:

1. What is the first day of the week?
2. What is the third day of the week?
3. What is the last day of the week?

CONVERSIONS

Changing weeks to days.

1. 1 week has 7 days.

3 weeks have 3×7 days.

$$
=21 \text { days. }
$$

2. 1 week has 7 days.

5 weeks have 5×7 days. $=35$ days.

Word problems

Changing days to weeks.

1. 7 days $=1$ week 7 days $=1$ week

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

$$
\begin{aligned}
21 \text { days } & =21 \div 7 \text { weeks } & 42 \text { days } & =42 \quad \div 7 \text { weeks } \\
& =3 \text { weeks } & & =6 \text { weeks. }
\end{aligned}
$$

Word problems

Addition and subtraction of weeks and days.

Example				
Wks	Days	2.	wks	days
5	2		7	5
+3	4		-2	3
8	6			2

Word problems involving addition and subtraction.

MONTHS OF THE YEAR

January has 31 days.
February has 28 days in ordinary year and 29 days in a leap year.
March has 31 days.
April has 30 days.
May has 31 days.
June has 30 days.
July has 31 days.
August has 31 days.
September has 30 days.
October has 31 days.
November has 30 days
December has 31 days.
4 weeks make a month.
12 months make a year.
52 weeks make a year.
365 days make a year but leap year has 366 days.

Changing years to months.

1. 1 year has 12 months

3 years have 3×12 months
$=36$ months
2. 1 year has 12 months

5 years have 5×12 months
$=60$ months

Changing months to years.

1. 12 months $=1$ year

24 months $=24 \div 12$ years
Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

Addition and subtraction of years and months Examples
. 1

yrs	months.	2.	yrs	months
3	4		8	7
+2	5		-5	$\mathbf{4}$
$\mathbf{5}$	$\mathbf{9}$		$\underline{\mathbf{3}}$	$\mathbf{3}$

Word problems

Finding the age.

1. A mother was born in 1978 and got her first child in the year 2001. How old was she when she got a baby?
She got a baby in 2001
She was born in -1978
She was 23 years old.

CAPACITY

Capacity is the measurement of liquids. Measuring liquids.

1. Comparing containers in litres.

One 20 litre jerry can = two ten litre jerry canes
2. One 20 litre jerry can = four 5 litre jerry canes
3. 2 tumpeco mugs $=1$ litre
4. How many $1 / 2$ litres make 1 litre?

CONVERSIONS

$K /$	$H /$	$D /$	l	$d l$	$c l$	$m /$
1	0	0	0	0	0	0
	1	0	0	0	0	0
		1	0	0	0	0
			1	0	0	0
				1	0	0
					1	0

$1 \mathrm{l}=1000 \mathrm{ml}$
Converting litres to millitres
1 litre $=1000 \mathrm{ml}$
Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

$$
\begin{aligned}
3 \text { litres } & =3 \times 1000 \mathrm{ml} \\
& =3000 \mathrm{ml}
\end{aligned}
$$

Converting millitres to litres

$$
\begin{aligned}
1000 \mathrm{ml} & =1 \text { litre } \\
4000 \mathrm{ml} & =(4000 \div 1000) \text { litre } \\
& =4 \text { litres }
\end{aligned}
$$

Addition and subtraction of capacity units.

1. 150 litres
2. L ml
8700
+20 litres
170 litres

-5	400
3	300

Exercise 14c, d, e and f Pp 162-166

MASS

The basic unit used is Kg Converting Kg to g .

$K g$	$H g$	$D g$	g	$d g$	$c g$	$m g$
1	0	0	0	0	0	0
	1	0	0	0	0	0
		1	0	0	0	0
			1	0	0	0
				1	0	0
					1	0

$1 \mathrm{Kg}=1000 \mathrm{~g}$

$$
\begin{aligned}
& \text { Example; } \\
6 \mathrm{Kg} ; \quad 1 \mathrm{Kg} & =1000 \mathrm{~g} \\
6 \mathrm{~kg} & =6 \times 1000 \\
& =6000 \mathrm{~g}
\end{aligned}
$$

Converting g to Kg.

E.g 5000g
$1000 \mathrm{~g}=1 \mathrm{~kg}$
$5000 \mathrm{~g}=(5000 \div 1000) \mathrm{kg}$

$$
=5 \div 1
$$

$$
=5 \mathrm{Kg} .
$$

Addition of mass in Kg and g

Kg	g
6	450

+2
+200

Exercise 15c Pg 171

Word problems on addition of weight.

1. Kato weighs 17 Kg 280 gm . His sister weighs 20 Kg 400 gm . Find their total weight.

	Kg	gm		
	17	280		
Kato weighs	+20	400		
His sister weighs	$\underline{y y}$			
Altogether they weigh		37		

Exercise 15d Pg 172

Subtraction of weight in Kg and g
$\mathrm{Kg} \quad \mathrm{g}$
6450

- $2 \quad 300$
$4 \quad 150$

Exercise 15e Pg 173

Word problems on subtraction of weight.
Ann had 5 Kg 750 gm of salt. She gave 3 Kg 250 to her mother. How much salt did she remain with?

	Kg	gm
Ann had	5	750
Gave mother	$-\quad 3$	250
She remained with	$\underline{2}$	500

Exercise 15 fgg 174

MONEY

1. Money is used as an exchange.
2. In Uganda we use coins notes.
3. Different currencies used in Uganda are:
a) Coins - 500/-, 200/-, $100 /-, 50 /-, 5 /-, 10$ cts and 5 cts.
b) Notes - 50000/-, 20000/-, 10000/-, 5000/- , 1000/-.

Finding how many small coins make a bigger shilling coin
How many shs. 100 coins make a five hundred shilling coin?
Shs. $500 \div 100=5$
Five. 100 shilling coins make a. 500 shilling coin.
Finding how many small shilling notes make a bigger shilling note
How many shs. 1000 notes make. 5000shilling?
Shs. $5000 \div 1000=5$
Five shs. 1000 notes make shs. 5000 note.

ADDITION OF MONEY

Sh
2000
+300
$\underline{2300}$

Exercise 16a Pg 177

Word problems on addition of money
I had 500 shillings. My father gave me 200 shillings more. How much money do I have now?
I had shs. 500
Father gave me shs. +200
Now I have \qquad
shs. 700

Exercise 16c Pg 178

SUBTRACTION OF MONEY

SHS
450
-200
200

Exercise 16d Pg 179

Word problems on subtraction of money
My sister had shs. 7500 . She gave me shs. 1400 . How much money remained with her?
My sister had shs. 7500 .
She gave me shs.- 1400
She remained with shs. 6100

Exercise 16f Pg 180

Multiplication of money

1. One cup costs shs. 500

3 similar cups cost shs. 500×3

$$
=\text { shs } 1500
$$

Exercise 16j Pg 185

Division of money

1. 4 boys shared shs. 2400 . How much did each get?

Powered by: -iToschool- | www.schoolporto.com | System developed by: lule 0752697211

1 boy got shs. $2400 \div 4$ = shs. 600
\therefore Each boy got shs. 600

Exercise 16k Pg 187

SHOPPING LIST.

1. Mr. Yiga went to a shop and bought;

2 packets of milk at shs. 800
A packet of tea leaves at shs. 500
1 Kg of sugar at
shs. 1500
A pencil at
shs 200
a) How much will he pay for 5 Kg of sugar?
b) How much will Tom pay for one packet of milk?
b) How much more money did he pay for tea leaves than a pencil?
c) How much money did he pay for all the items?
d) If he went to the shop with shs .5000 , find the balance that he remained with after paying for all the items listed above.

Exercise 16i Pg 184

2. SHOPPING LIST

Musa went to the market and bought the following;
2 kg of meat at shs 1000@.
1 kg of rice at shs 1000@.
2kg of posho at shs 500 @.

item	quantity/number of items	Price for each	amount
meat	2 kg	Shs 4000	Shs 8000
rice	1 kg	Shs 3000	Shs 3000
posho	2 kg	Shs1500	Shs3000
Total =Shs14000			

Exercise 16h Pp 183

