‘O’ Level Physics Formula Sheet

Principle of Moment Σ Anticlockwise Moment $=\Sigma$ Clockwise Moment	For a body in rotational equilibrium, Sum of ACW Moment = sum of CW Moment
ressure	
$\begin{aligned} & \text { Pressure } \\ & =\mathrm{F} \\ & ? \quad \overline{\mathrm{~A}} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{P}=\text { Pressure } \\ & \mathrm{F}=\text { Force over area }, \mathrm{A} \\ & \mathrm{~A}=\text { Area } \end{aligned}$
Pressure of liquid column $\mathbf{P}=\mathrm{h} \rho \mathrm{~g}$	$\begin{aligned} & \hline \mathrm{P}=\text { Pressure } \\ & \rho=\text { density }, \\ & \mathrm{h}=\text { height of liquid column } \\ & \mathrm{g}=\text { gravitational field strength. } \end{aligned}$
Energy, ork and Power	
Work Done $\mathbf{W}=\mathrm{Fd}$	$\begin{aligned} & \hline W=\text { work done } \\ & F=\text { force } \\ & d=\text { distance in direction of force } \end{aligned}$
Power $\mathbf{P}=\mathrm{W} / \mathrm{t}=\mathrm{Fv}$	Work done per unit time, t
Kinetic Energy $? ?=1 \quad 2$	$\begin{aligned} & \mathrm{E}_{\mathrm{k}}=\text { Kinetic Energy } \\ & \mathrm{m}=\text { mass } \\ & \mathrm{v}=\text { velocity } \end{aligned}$
Gravitational Potential Energy $\mathrm{E}_{\mathrm{p}}=\mathrm{mgh}$	$\begin{aligned} & \mathrm{g}=\text { gravity }=9.81 \mathrm{~m} / \mathrm{s} \\ & \mathrm{~h}=\text { height } \\ & \mathrm{m}=\text { mass } \end{aligned}$
Conservation of Energy $\mathrm{E}_{1}=\mathrm{E}_{2}$	$\mathrm{E}_{1}=$ Total Energy Before $\mathrm{E}_{2}=$ Total Energy After Energy cannot be created or destroyed. It can only be transformed or converted into other forms.
Kinetic Model of Matter	
Ideal Gas Law $P V \infty T$ $\stackrel{\underset{P_{1} V_{1}}{=}{ }_{2} V_{2}}{ }$	$\mathrm{P}=$ pressure of fixed mass of gas $\mathrm{V}=$ volume occupies by fixed mass of gas $\mathrm{T}=$ Temperature of gas Subscript $1=$ initial state Subscript 2 = final state
Thermal Properties of Matter	
Specific Heat Capacity $\mathbf{E}=\mathrm{mc} \Delta \mathrm{~T}$	$\mathrm{c}=$ Specific heat capacity (Energy required to raise the temperature of 1 kg of the object by $1^{\circ} \mathrm{C}$) $\mathrm{m}=$ mass $\Delta \mathrm{T}=$ change in temperature.
Latent Heat For melting, $\mathbf{E}=\mathrm{m}_{\text {fusion }}$ For boiling, $\mathbf{E}=\mathrm{m}$ Lvaporization	Lfusion = latent heat of fusion (Energy required to change 1 kg of solid to liquid at the constant temp) $L_{\text {vaporization }}=$ latent heat of vaporization (Energy required to change 1 kg of liquid to gas at the constant temp) $\mathrm{m}=\text { mass }$
General Wave Properties	
Wave Velocity $\mathbf{v}=\mathrm{f} \lambda$	$\begin{aligned} & \mathrm{v}=\text { velocity of a wave } \\ & \mathrm{f}=\text { frequency } \\ & \lambda=\text { wavelength } \\ & \hline \end{aligned}$
Wave frequency $\mathbf{f}={ }_{\mathrm{T}}^{1}$	$\begin{aligned} & \mathrm{T}=\text { Period } \\ & \mathrm{f}=\text { frequency } \end{aligned}$

'O' Level Physics Formula Sheet

Light		Practical Electricity	
$\begin{aligned} & \hline \text { Law of Reflection } \\ & \Theta_{1}=\theta_{\mathrm{r}} \\ & \Theta_{\mathrm{i}}=\text { angle of incidence } \\ & \theta_{\mathrm{r}}=\text { angle of reflection } \\ & \hline \end{aligned}$		Electric Power $\mathbf{P}=\mathrm{VI}=\mathrm{V}^{2} / \mathrm{R}=\mathrm{I}^{2} \mathrm{R}$	$\begin{aligned} & \mathrm{P}=\text { Power } \\ & \mathrm{V}=\text { voltage } \\ & \mathrm{R}=\text { resistance } \\ & \mathrm{I}=\text { current } \end{aligned}$
		Electrical Energy$\mathbf{E}=\mathrm{Pt}=(\mathrm{VI}) \mathrm{t}$	$\begin{aligned} & E=\text { energy output } \\ & P=\text { power } \\ & t=\text { time } \\ & V=\text { voltage } \\ & I=\text { current } \end{aligned}$
Snell's Law (refraction) $n_{1} \operatorname{Sin} \theta_{i}=n 2 \operatorname{Sin} \Theta_{r}$			
		Elec romagnetism	
$\theta_{\mathrm{r}}=$ angle of refraction		Transformer$\begin{aligned} & \mathrm{V}_{\mathrm{p}}=\mathrm{N}_{\mathrm{p}} \\ & \frac{\mathrm{~V}_{\mathrm{s}}}{} \quad \mathrm{~N}_{\mathrm{s}} \\ & \text { (ideal transformer) } \\ & \mathrm{V}_{\mathrm{P}} \mathrm{I}_{\mathrm{P}}=\mathrm{V}_{\mathrm{s}} \mathrm{I}_{\mathrm{s}} \end{aligned}$	$\begin{aligned} & \mathrm{V}=\text { voltage } \\ & \mathrm{N}=\text { number of coils } \\ & \mathrm{I}=\text { current } \\ & \text { Subscript } \mathrm{p}=\text { primary coil } \\ & \text { Subscript } \mathrm{s}=\text { secondary coil } \end{aligned}$
Critical angle $\sin ?=\underline{n} 2$			
(special case of Snell's law where $\theta_{\mathrm{t}}=90^{\circ}$)		Right hand grip	
Refractive Index $\begin{aligned} & ?=\frac{c}{\bar{v}} \\ & (\mathrm{n} \text { of air } \approx 1) \end{aligned}$	$\mathrm{c}=$ speed of light in vacuum. $\mathrm{v}=$ speed of light in medium Higher reflective index of a medium means light travel slower in the medium		
$\begin{aligned} & \text { Magnification } \\ & ?=h_{\mathrm{i}}=\mathrm{d}_{\mathrm{i}} \end{aligned}$	$\mathrm{M}=$ magnification $\mathrm{h}=$ height $\mathrm{d}=$ distance from lens Subscript i = image Subscript o = object		
		Fleming's Right Hand Rule	
Current of Electricity			
$\begin{aligned} & \text { Current } \\ & \mathbf{I}=\mathrm{Q} / \Delta \mathrm{t} \end{aligned}$	$\begin{aligned} & \text { Current = rate of flow of charges } \\ & Q=\text { Charge } \\ & t=\text { time } \end{aligned}$		
Ohm's Law Resistance $\mathbf{R}=\mathrm{V} / \mathrm{I}$	$\begin{aligned} & \mathrm{V}=\text { voltage, } \\ & \mathrm{R}=\text { resistance } \\ & \mathrm{I}=\text { current } \end{aligned}$		
Resistance of a wire $\mathbf{R}=\rho \mathrm{L} / \mathrm{A}$	$\begin{aligned} & \rho=\text { resistivity } \\ & L=\text { length of wire } \\ & A=\text { cross sectional area } \end{aligned}$	Fleming's Left Hand Rule	
\qquad Kirchoff's $1^{\text {st }}$ Law $\mathrm{I}_{\text {in }}=\mathrm{I}_{\text {out }}$ Kirchoff’s 2 ${ }^{\text {nd }}$ Law $\mathrm{V}=\mathrm{E} . \mathrm{M} . \mathrm{F}$. Circuits		
	Conservation of charges. $\sum \mathrm{I}$ in = Sum of current going into a junction \sum I out $=$ Sum of current going out of a junction		
	VV across all components in a circuit E.M.F = Voltage supplied by the power supply.		
Resistance in Series $\mathrm{R}_{\text {total }}=\mathrm{R}_{1}+\mathrm{R}_{2}+3$			
Resistance in Parallel $\frac{1}{\mathrm{R}_{\text {total }}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}$	$\left.\begin{array}{c} \mathrm{V} \\ \mathrm{R}_{1} \\ {[\quad} \\ \mathrm{R}_{2} \\ \mathrm{R}_{3} \end{array}\right]$		

