O-level

Digitalteachers.co.ug

PERCENTAGE

We calculate the percentage of an element in a compound if we know the relative atomic masses e.g.

Percentage $=\frac{\text { Mass of an element or component in a compound X } 100}{\text { Relative formula mass of compound }}$
Example 1
What is the percentage of Fe in Iron II sulphate $\left(\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}\right)$
$[\mathrm{Fe}=56, \mathrm{~S}=32,0=16, \mathrm{H}=1]$
Solution:
R.F.M of $\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Fe}+\mathrm{S}+4 \mathrm{O}+7(2 \mathrm{H}+\mathrm{O})$
$56+32+(4 \times 16)+7(2+16)$
$=\quad 278$
There are 56 parts of iron in 278 parts of the compound
Therefore, the percentage of Iron by mass $=\frac{56 \times 100}{278}$

$$
=\quad 20.1 \%
$$

Example 2
What is the percentage of nitrogen in ammonium sulphate? $\left[\left(\mathrm{NH}_{4) 2} \mathrm{SO}_{4}\right.\right.$

$$
(\mathrm{N}=14, \mathrm{H}=1, \mathrm{~S}=320=16)
$$

Solution:

$$
\begin{aligned}
\text { R.F.M of }(\mathrm{NH} 4)_{2} \mathrm{SO}_{4}= & 2(14+4)+32+16 \mathrm{X} 4 \\
& 36+32+64 \\
& =132
\end{aligned}
$$

Therefore, the percentage $=\underline{28} \times 100$
$=\mathbf{2 1 . 2 \%}$
Exercise:

- Calculate the percentage of Cu in CuSO_{4}
- Calculate the percentage of Nitrogen in lead nitrate $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
$C u=64, S=32, O=16, N=14, P b=207$

Exercise

1. The percentage by mass of water of crystallization in $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is
A. $\frac{90 \times 100 \%}{250}$
B. $\frac{18 \times 100 \%}{250}$
C. $\frac{90 \times 100 \%}{160}$
D. $\frac{18 \times 100 \%}{250}$
$(\mathrm{Cu}=64, \mathrm{~S}=32,0=16 \mathrm{H}=1)$
2. The percentage by mass of phosphorus in calcium phosphate, $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$, is
A. 8%
B. 10\%
C. 17% D. 20%
$(C a=40, P=31,0=16)$
3. What is the percentage of sulphur in Iron (III) sulphate, $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$?
($0=16, \mathrm{Fe}=56, \mathrm{~S}=32$)
A. $\frac{32 \times 100 \%}{400}$
B. $\frac{96 \times 100 \%}{400}$
C. $\frac{112 \times 100 \%}{400}$
D. $\frac{128 \times 100 \%}{250}$
4. The percentage by mass of oxygen in $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ is
B. $\frac{16 \times 100 \%}{250}$
B. $\frac{64 \times 100 \%}{250}$
C. $\frac{16 \times 100 \%}{160}$
D. $\frac{144 \times 100 \%}{250}$
$(\mathrm{Cu}=64, \mathrm{~S}=32, \mathrm{O}=16 \mathrm{H}=1)$
5. The percentage composition of nitrogen in ammonium nitrate, $\mathrm{NH}_{4} \mathrm{NO}_{3}$ is ($\mathrm{N}=14, \mathrm{H}=10=16$)
A. $\frac{14 \times 100 \%}{80}$
B. $\frac{76 \times 100 \%}{80}$
C. $\frac{58 \times 100 \%}{80}$
D. $\frac{28 \times 100 \%}{80}$
6. The percentage of phosphorus in $\mathrm{H}_{3} \mathrm{PO}_{4}$ is given by
A. $\frac{82 \times 100 \%}{31}$
B. $\frac{31 \times 100 \%}{82}$
C. $31 \times 32 \times 100$
D. $\frac{82 \times 31}{100}$
7. The percentage of water of crystallization in hydrated iron (II) sulphate, $\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ is $\left(\mathrm{FeSO}_{4}=152,0=16, \mathrm{H}=1\right)$
A. $\frac{126 \times 100 \%}{278}$
B. $\frac{278 \times 100 \%}{8}$
C. $\frac{126 \times 100 \%}{152}$
D. $\frac{152 \times 100 \%}{126}$

Answers

1. A 2. D 3.B 4.D 5.D 6.B \quad 7. A

Working

1. Formula mass of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}=64+32+16 \times 4+5(16+1 \mathrm{x} 2)=250$

Mass of water of crystallization $=5(1 \times 2+16)=90$
Percentage of water of crystallization $=\frac{90 \times 100 \%}{250}$
2. Formula mass of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}=40 \times 3+2(31+16 \times 4)=310$

Mass of phosphorus $=31 \times 2=62$
Percentage phosphorus $=\frac{62 \times 100 \%}{310}=20 \%$
3. Formula mass of $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}=56 \times 2+3(32+16 \times 4)=400$

Mass of sulphur in $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}=3 \times 32=96$
Percentage of water of crystallization $=\frac{96 \times 100 \%}{400}$
4. Formula mass of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}=64+32+16 \times 4+5(16+1 \mathrm{x} 2)=250$

Mass of oxygen in $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}=16 \times 4+5 \times 16=144$
Percentage of water of crystallization $=\frac{144 \times 100 \%}{250}$
5. Formula mass of $\mathrm{NH}_{4} \mathrm{NO}_{3}=(14+1 \times 4+14+16 \times 3)=80$

Mass of nitrogen $=14 \times 2=28$
Percentage of nitrogen $=\frac{28 \times 100 \%}{80}$
6. Formula mass of $\mathrm{H}_{3} \mathrm{PO}_{4}=(1 \times 3+31+16 \times 4)=82$

Mass of phosphorus $=31$
Percentage of nitrogen $=\frac{31 \times 100 \%}{82}$
7. Formula mass of $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}=152+7(1 \mathrm{x} 2+16)=278$

Mass of water of crystallization $=7(1 \mathrm{x} 2+16)=126$
Percentage of water of crystallization $=\frac{126 \times 100 \%}{278}$

