Digitalteachers.co.ug

O-level chemistry

Calculations involving heat in reactions

Reaction involve energy change; exothermic reactions such as burning fire woods produce heat while endothermic reactions such as dissolution of ammonium chloride in water absorb heat.

The amount of heat absorbed or released in a reaction depend on

- Amounts of the reactants
- Temperature and
- Pressure at which a reaction is carried out.

When molar quantities are involved at 298 K and 1 atmosphere, the resultant heat changes are referred to as standard heat/enthalpy changes given a symbol a symbol $\Delta \mathrm{H}$ (delta H).

Enthalpy changes (ΔH) (for exothermic reactions carry a negative sign because heat is lost from the system while enthalpy changes (ΔH) for endothermic reaction carry a positive sign because heat is gained by the system.

Heat is measured in joules (J)

Each heat change is identified by names; the common ones are:

1. Heat of combustion or enthalpy of combustion of a substance is the heat change when 1 mole of substance is burnt completely in oxygen.

Experiment to determine enthalpy of combustion

A given mass $\left(M_{1} g\right)$ of a substance of molecular mass, $M r$, is burnt completely in excess oxygen. Heat liberated raises the temperature of (Mw g) of water through a temperature change of θ^{0}.
Assumption

$$
\begin{array}{ll}
\text { Heat liberated by a burning substance } & =\text { heat absorbed by water } \\
& =\mathrm{MwC} \mathrm{\theta} \text { (where } \mathrm{C}=\text { specific heat capacity of water) } \\
\Rightarrow \mathrm{M}_{1} \mathrm{~g} \text { of the substance produce } & \mathrm{MwC} \mathrm{\theta} \mathrm{~J} \\
\Rightarrow \mathrm{Mr} \text { g of substance produce } & \frac{M_{w} C \theta \times M r}{M_{1}} \mathrm{Jmol}^{-1} .
\end{array}
$$

Therefore, enthalpy of combustion of the substance $=\frac{M_{w} C \theta \times M r}{M_{1}} \mathrm{Jmol}^{-1}$

Experimental depends on whether a fuel is a liquid or a solid.

Experimental method for finding enthalpy of combustion a liquid fuel

The figure below shows a simple method for obtaining approximate value for the enthalpy of combustion of a fuel.

Calculations

Assumption
Heat produced by

combusting fuel \quad| Heat gained by |
| :--- |
| calorimeter and |
| water |

Heat gained by calorimeter and water = $\mathrm{C} \Theta$ joules

It implies that
$\mathrm{m}_{1} \mathrm{~g}$ of fuel produce $=\mathrm{C} \Theta$ joules

> Mr (mass equivalent to 1
> mole of fuel) produces $=\frac{M r C \theta}{m_{1}}$ joulesmol $^{-1}$

Example 1

When 23 g of ethanol completely burnt, 13600 KJ of heat was produced.
Calculate the molar heat of combustion of ethanol $(\mathrm{C}=12, \mathrm{H}=1, \mathrm{O}=16)$

solution

Formula mass of ethanol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)=12 \times 2+6+16=46$
23 g of ethanol liberate 13600 KJ

Then, 46 g of ethanol liberate $\frac{13600 \times 46}{23}=27200 \mathrm{~kJ}$
Therefore, the enthalpy of combustion of ethanol $=27200 \mathrm{kJmol}^{-1}$.

2. Enthalpy of neutralization

This refers to enthalpy change for the formation 1 mole of water from hydrogen and hydroxide ions $\mathrm{H}^{+}(\mathrm{g})+{ }^{-} \mathrm{OH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

Measurement of standard enthalpy of neutralization

The heat released when a known amount of water is formed is found by measuring the temperature produced in a calorimeter and its contents.

NB. A vacuum flask is used to minimize heat losses

Know volume of standard acid $\left(\mathrm{V}_{1}\right)$ and alkali $\left(\mathrm{V}_{2}\right)$ are added to calorimeter, and temperature change $\theta^{\circ} \mathrm{C}$ is noted. The number of moles of water formed, M_{w}, is calculated

Calculations

Heat given out $=\quad$ Heat received by
By water calorimeter of capacity, C.

Total volume $=\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right) \mathrm{cm}^{3}$
Given that the density of solution = density of water $\left(\right.$ or $1 \mathrm{gcm}^{-1}$)
Mass of water, $m=\left(V_{1}+V_{2}\right) g$

Heat $=\mathrm{mc} \theta \mathrm{J}$ (where c is the specific heat capacity

Amount of water formed $=m_{w}$ moles

The standard enthalpy of neutralization is $(\mathrm{mc} \theta) / \mathrm{m}_{\mathrm{w}} \mathrm{Jmol}^{-1}$.

Example 2

$250 \mathrm{~cm}^{3}$ of 0.40 M NaOH were added to $250 \mathrm{~cm}^{3}$ of 0.40 M HCl in the calorimeter. The temperature of the two solutions was $17.5^{\circ} \mathrm{C}$ and rose to $20.1^{\circ} \mathrm{C}$

Calculate the enthalpy of neutralization assuming that the specific heat capacities of solution are the same as that of water $=4180 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$.
Solution
Temperature rise $\quad=20.1-17.5=2.6^{\circ} \mathrm{C}$
Mass of solution $\quad=$ total volume of solution

$$
=(250+250)=500 \mathrm{~g}
$$

Heat liberated

$$
=m c \theta
$$

$$
=500 \times 4.180 \times 2.6
$$

$$
=5434 \mathrm{~J}
$$

Mole of water produced $=$ moles of NaOH or moles of HCl

$$
=\frac{250 \times 0.4}{1000}=0.1 \mathrm{~mole}
$$

0.1 mole of water require $=5434 \mathrm{~J}$

1 mole of water require $=\frac{5434 \times 1}{0.1}=54340 \mathrm{~J}$
Therefore, enthalpy of neutralization of water $=54340 \mathrm{Jmol}^{-1}$

Exercise

1	When 1 gram of methanol is burnt in excess air 22.6 kJ of heat was liberated. What is the quantity of heat in kJ liberated when 1 mole of methanol was burnt under similar conditions A. 22.6 B. 32 C. 723.2 D. 777.8
2	5.3 kJ of energy are required to vaporize 13 g of a liquid X (molecular mass of $X=78$) The molar heat of vaporization of X in $\mathrm{kJ} /$ mole is A. $\frac{5.3 \times 78}{13}$ B. $\frac{13 \times 78}{5.3}$ C. $\frac{5.3 \times 13}{78}$ D. $5.3 \times 13 \times 78$
3	When 0.4 g of ethanol was burnt, it raised the temperature of 0.1 kg of water by $20^{\circ} \mathrm{C}$. the heat of combustion of ethanol is (specific heat capacity of water $=4.2 \mathrm{~kJ} / \mathrm{kg} /{ }^{\circ} \mathrm{C}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=46$) A. $\frac{4.2 \times 20 \times 46}{0.1 \times 0.4} \mathrm{kjmol}^{-1}$ B. $\frac{0.14 \times 4.2 \times 20}{46 \times 0.1} \mathrm{kjmol}^{-1}$ C. $\frac{0.1 \times 4.2 \times 20 \times 46}{0.4} \mathrm{kjmol}^{-1}$ D. $\frac{0.1 \times 20 \times 46}{46 \times 0.4} \mathrm{kjmol}^{-1}$

4	Glucose burn according to the following equation below giving out $2802 \mathrm{kJmol}^{-1}$ of heat energy. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ The amount of heat produced when 18 g of glucose is burnt in oxygen at the same temperature is $(H=1, C=12, O=16)$ A. $\frac{2802 \times 18}{180 \times 25}$ B. $\frac{180}{2802 \times 18}$ C. $\frac{180 \times 2518}{2802}$ D. $\frac{2802 \times 18}{180}$
5	Graphite burns in oxygen according to he following equation $\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=-390 \mathrm{kJmol}^{-1}$ When 48 g of graphite is burnt in oxygen the heat produced is A. -97.5 kJ B. -195 kJ C. -780 kJ D. -1560 kJ $(C=12, O=16, H=1)$
6	The formation of methanol from hydrogen and carbon monoxide is represented by equation $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \longrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g}) \Delta \mathrm{H}=-92 \mathrm{kJmol}-1$ What would be the energy released, in kJ , when 3.2 g of methanol is formed? A. 2.9 B. 3.6 C. 9.2 D. 10.2
7	When 2.0 g of substance X were burnt the heat produced raised the temperature of 1000 g of water by $15.6^{\circ} \mathrm{C}$. The molar heat of combustion of X in joules is (the specific heat capacity of water is $4.2 \mathrm{Jg}^{-10} \mathrm{C}$, relative molecular mass of X is 60) A. $\frac{1000 \times 4.2 \times 15.6 \times 20}{6 o}$ B. $\frac{15.6 \times 60 \times 1000}{2.0 \times 4.2}$ C. $\frac{15.6 \times 2.0 \times 1000}{4.2 \times 60}$ D. $\frac{4.2 \times 15.6 \times 60}{2}$
8	Methanol burns in excess air according to the equation $2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{I})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad \Delta \mathrm{H}=-730 \mathrm{kJmol}$ The amount of heat liberated when 3.2 g of methanol $(\mathrm{Mr}=32)$ is burnt completely is A. 73 kJ B. 730 kJ C. 1416 kJ D. 2929 kJ
9	Carbon reacts with sulphur according to the following equation $\mathrm{C}(\mathrm{~s})+2 \mathrm{~S}(\mathrm{~s}) \longrightarrow \mathrm{CS}_{2}(\mathrm{~s}) \quad \Delta \mathrm{H}=116 \mathrm{~kJ}$ The amount of heat absorbed when 16 g of sulphur reacts with excess carbon is ($\mathrm{C}=12, \mathrm{~S}=32$) A. 7 kJ B. 29 kJ C.58kJ D. 116 kJ

10	When 8 g of salt was dissolved in 100 g of water the temperature decreased by $10^{\circ} \mathrm{C}$. The drop in temperature when 2 g of the salt is dissolved in 100 g of water would be ($\mathrm{H}=1, \mathrm{O}=16$) A. $10^{\circ} \mathrm{C}$ B. $8.5^{\circ} \mathrm{C}$ C. $5.0^{\circ} \mathrm{C}$ D. $2.5^{\circ} \mathrm{C}$
11	Ethanol burns in oxygen according to the following equation $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I})+\frac{7}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \Delta \mathrm{H}-1185 \mathrm{~kJ}$ Calculate heat given out when 0.2 moles of ethanol is burnt completely A. -237 kJ B. -592 kJ C. -1185 kJ D. -2370 kJ
12	Carbon monoxide reacts with hydrogen according to the equation $\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{I}) \Delta \mathrm{H}=+91 \mathrm{kJmol}^{-1}$ What mass of carbon monoxide would cause heat change of $+188.2 \mathrm{~kJ}(\mathrm{H}=1, \mathrm{C}=12, \mathrm{O}=16)$ A. 2 g B. 28 g C. 58 g D. 273 g
13	13.7 kJ of heat was evolved when 4.0 g of copper was displaced from copper (II) sulphate solution by zinc. The amount heat evolved when one mole of copper was displaced is A. $\frac{63.5 \times 4}{13.7}$ B. $\frac{13.7 \times 63.5}{4}$ C. $\frac{13.7 \times 4}{63.5} \quad$ D. $\frac{63.5}{13.7 \times 4}$
14	Carbon burns in excess oxygen according to the equation $\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) \Delta H-393 \mathrm{~kJ}$ What mass of carbon in grams would produce750kJ of energy A. $\frac{393 \times 12}{750}$ B. $\frac{750 \times 12}{393000}$ C. $\frac{75012}{393}$ D. $\frac{750 \times 393}{12}$
15	10 g of methanol, $\mathrm{CH}_{3} \mathrm{OH}$, burns in air to liberate 226 kJ of heat. The amount of heat liberated when 1 mole of methanol is burn in air is ($H=1, C=12$) A. $\frac{32 \times 226}{10}$ B. $\frac{10 \times 32}{226}$ C. $\frac{10}{32226}$ D. $\frac{10 \times 226}{32}$
16	When 1.0 g of carbon is burnt in excess oxygen, the heat produced raises the temperature of 400 g of water by $19^{\circ} \mathrm{C}$. the heat of combustion of carbon is ($\mathrm{C}=12$, specific heat capacity of water is $4.2 \mathrm{kJkg}^{-1} \mathrm{~K}^{-1}$) A. $0.4 \times 4.2 \times 19 \times 12 \mathrm{kJmol}^{-1}$ B. $\frac{0.4 \times 4.2}{12 \times 19} \mathrm{kJmol}^{-1}$ C. $400 \times 4.2 \times 19 \times 12 \mathrm{kJmol}^{-1}$

	D. $\frac{1219 \times 19}{0.4 \times 4.2} \mathrm{kJmol}^{-1}$
17	Ethanol burns in oxygen according to the following equation $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(\mathrm{I})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ Calculate the amount of heat evolved when 45 g of oxygen is used for complete combustion of ethanol. ($C=12, H=1, O+16$, the molar heat of combustion of ethanol is $1370.0 \mathrm{kJmol}^{-1}$) A. 642.2 kJ B. 1284.4 kJ C. 1340.2 kJ D. 1926.6 kJ
18	When 1 mole of ammonium chloride was dissolved in a certain volume of water, 2.94 kJ of heat was absorbed. The amount heat absorbed when 5.35 g of ammonium chloride is dissolved in the same volume of water is $\left(\mathrm{NH}_{4} \mathrm{Cl}=53.5\right)$ A. $\frac{53.5}{2.94 \times 5.53} \mathrm{~kJ}$ B. $\frac{2.94 \times 5.35}{53.5} \mathrm{~kJ}$ C. $\frac{29.4 \times 53.5}{5.35}$ D. $\frac{53.5 \times 5.35}{2.94}$
19	When 2.3 g of ethanol was completely burnt in oxygen, heat evolved raised the temperature of 100 g of water by $30^{\circ} \mathrm{C}$. the molar heat of combustion f ethanol is [The molar heat of combustion of ethanol in joule is (the molar mass of ethanol $=46$ and the specific heat capacity of water $=4.2 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}$) A. $\frac{100 \times 4.2 \times 30 \times 46}{2.3}$ B. $\frac{30 \times 4.2 \times 2.3 \times 100}{46}$ C. $\frac{20 \times 4.22 .3 \times 100}{46}$ D. $\frac{20 \times 4.2 \times 46100}{2.3}$
20	When 2.4 gof magnesium was reacted with $200 \mathrm{~cm}^{3}$ of 2 M hydrochloric acid, 13.6 kJ of heat was evolved. The molar heat of reaction of magnesium with the acid is $(M g=24)$ A. $\frac{13.6 \times 200}{24 \times 2.4} \mathrm{~kJ}$ B. $\frac{13.6 \times 24}{2.4 \times 200}$ c. $\frac{2.4 \times 24}{13.6} \mathrm{~kJ}$ D. $\frac{24 \times 13.6}{2.4} \mathrm{~kJ}$
21	Butane undergoes combustion according to the following equation: $2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+13 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\text { heat }$ The mass of butane required to produce 950 kJ of heat is ($H=1, C=12,1$ mole of butane produces 2877 kJ of heat) A. $\frac{950 c 58}{2 \times 2877} g$ B. $\frac{950 \times 58}{2877}$ C. $\frac{950 \times 52 \times 2}{2877}$ D. $\frac{2877 \times 58}{950}$

Section B

22.	(a)	What is meant by enthalpy of neutralization? (02marks)
	(b)	When $50.0 \mathrm{~cm}^{3}$ of 1 M sulphuric acid was added to $50 \mathrm{~cm}^{3}$ of 2 M sodium hydroxide, the temperature rose by $13.6^{\circ} \mathrm{C}$. (i) Write ionic equation for the reaction that took place (01 mark) (ii) Calculate the enthalpy of neutralization of sodium hydroxide. (specific heat capacity of water $=4.2 \mathrm{Jmol}^{-1}$, density of water $1 \mathrm{~g} / \mathrm{cm}^{3}$ (3marks)
23		Biogas contain mainly methane.
	(a)	Name two raw materials that can be used to produce biogas
	(b)	Methane burns in oxygen according to the following equation $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \Delta \mathrm{H}=-890 \mathrm{kJmol}^{-1}$ Calculate the volume of methane at s.t.p that will produce 2670 kJ .
24	(a)	$50 \mathrm{~cm}^{3}$ of 2 M HCl and $50 \mathrm{~cm}^{3}$ of 2 M NaOH each at $22^{\circ} \mathrm{C}$ were mixed in a plastic beaker. The mixture was stirred and its maximum temperature was $35^{\circ} \mathrm{C}$. [heat capacity of solution is $4.2 \mathrm{kkg}^{-10} \mathrm{C}$, density of water $=1 \mathrm{gcm}^{-3}$] (i) Write ionic equation for the reaction. (ii) Calculate the heat of reaction
	(b)	$50 \mathrm{~cm}^{3}$ of 2 M ammonia was used instead of 2 M NaOH in (a). State whether the heat of the reaction was greater than, equal to or less than the value obtained in (a)(ii) above. Explain your answer.
25	(a)	Write equation for complete combustion of methane
	(b)	A litre of methane gas costs 600/=. Calculate the cost of methane required to produce 1746×10^{3} J of heat. (1 mole of a gas occupies $24 \mathrm{dm}^{3}$ at room temperature, heat of combustion of methane is $-882 \mathrm{kJmol}^{-1}$)
26	(a)	Define the term enthalpy of combustion (02marks)
	(b)	With the aid of a diagram describe an experiment you would carry out in a laboratory to determine the enthalpy of combustion of propanol (9marks)
	(c)	In an experiment to determine the enthalpy of combustion of propanol, 0.54 g of propanol was burnt and the heat evolved caused the temperature of $150 \mathrm{~cm}^{3}$ of water to rise by $21.5^{\circ} \mathrm{C}$ (molar mass of propanol $=60$, density of water is $1 \mathrm{gcm}^{-3}$, specific heat capacity of

		water $=4.1 \mathrm{Jg}^{-1}$) Calculate heat capacity experiment value of enthalpy of combustion of propanol ($31 / 2$ marks)
27		Ethane burns in oxygen according to the following equation $2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ When 2.0 g of ethane was burnt in excess oxygen, 104 kJ of heat was produced. Calculate
	(a)	Mass of water formed (03marks)
	(b)	Molar heat of combustion of ethane (02marks)
28	(a)	What is meant by the term enthalpy of combustion? (02mark)
	(b)	Ethanol burns in oxygen according to the following equation $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad \Delta H-1360 \mathrm{kJmol}^{-1}$ Calculate the mass of ethanol that is required to raise the temperature of $1000 \mathrm{~cm}^{3}$ of water by $10.0^{\circ} \mathrm{C}$ (03 marks) (specific heat capacity of water $=4.2 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}$)

1	C	Formula mass of methanol, $\mathrm{CH}_{3} \mathrm{OH}=12+3+16+1=32$ 1 g of methanol produce 22.6 kJ 32 g (1mole) produce $22.6 \times 32=723.2 \mathrm{~kJ}$
2	B	5.3 g of X require 5.3 kJ 78 g of X require $\frac{5,3 \times 78}{13} \mathrm{~kJ}$
3	C	Heat $=\mathrm{mc} \theta=(0.1 \times 4.2 \times 20) \mathrm{kJ}$ 0.4 g of ethanol produce $(0.1 \times 4.2 \times 20) \mathrm{kJ}$ 46 g of ethanol produce $\frac{0.1 \times 4.2 \times 20 \times 46}{0.4}$
4	D	Formula mass $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ weigh $6 \times 12+12 \times 1+16 \times 6=180$ 180g glucose produce 2802 kJ 18 g of glucose produce $\frac{2802 \times 18}{180} \mathrm{~kJ}$
5	D	12g produce 390kJ 48 g produce $\frac{390 \times 48}{12}=1560 \mathrm{~kJ}$
6	C	Formula mass of methanol, $\mathrm{CH}_{3} \mathrm{OH}=32$ 32 g of $\mathrm{CH}_{3} \mathrm{OH}$ produce 92 kJ 3.2 g of $\mathrm{CH}_{3} \mathrm{OH}$ produce $\frac{92 \times 3.2}{32}=9.2 \mathrm{~kJ}$
7	D	$\begin{aligned} & \text { Heat }=\mathrm{mc} \theta=(1000 \times 4.2 \times 15.6) \mathrm{J} \\ & 2 \mathrm{~g} \text { of } \mathrm{X} \text { produce }(1000 \times 4.2 \times 15.6) \mathrm{J} \\ & 60 \mathrm{~g} \text { of } \mathrm{X} \text { produce } \frac{1000 \times 4.2 \times 15.6 \times 60}{2} \mathrm{Jmol}^{-1} \end{aligned}$

8	A	32 g of methanol produce 730kJ 3.2 g of methanol produce $\frac{730 \times 3.2}{32}=73 \mathrm{~kJ}$
9	B	(2×32)g of sulphur produce 116 kJ 16 g of sulphur produce $\frac{116 \times 16}{64}=29 \mathrm{~kJ}$
10	D	8 g cause a drop in temperature of $10^{\circ} \mathrm{C}$ 2 g will cause a drop in temperature of $\frac{2 \times 10^{0}}{8} 2.5^{\circ} \mathrm{C}$
11	A	1 mole of ethanol produce 1185 kJ 0.2 mole produce 0.2×1185
12	C	Formula mass of $\mathrm{CO}=12+16=28$ 91 kJ is absorbed by 28 g of CO 1882 kJ is absorbed by $\frac{1882 \times 28}{91}=57.9 \mathrm{~g}$
13	B	4.0 g of copper produce 13.7 kJ 63.5 g of copper produce $\frac{63.5 \times 13.7}{4} \mathrm{~g}$
14	C	393 kJ are produced by 12 g of carbon 750 kJ require $\frac{750 \times 12}{393} \mathrm{~g}$
15	D	Formula mass of $\mathrm{CH}_{3} \mathrm{OH}=12+3 \times 1+16+1=32 \mathrm{~g}$ 10 g of methanol produce 226 kJ 32 g (1mole) produce $\frac{226 \times 32}{10} \mathrm{~kJ}$
16	A	$400 \mathrm{~g}=\frac{400}{1000}=0.4 \mathrm{~kg}$ Heat produced $=m c \theta=(0.4 \times 4.2 \times 19) \mathrm{kJ}$ 1 g of carbon produces $(0.4 \times 4.2 \times 19) \mathrm{kJ}$ $12 \mathrm{~g} \text { produce } \frac{(0.4 \times 4.2 \times 19 \times 12)}{1} k J$

17	B	Formula mass of $\mathrm{O}_{2}=16 \times 2=32$ $(3 \times 32) \mathrm{g}$ of oxygen produce 1370 kJ 45 g of oxygen produce $=\frac{1370 \times 45}{3 \times 32}$
18	B	Formula mass of $\mathrm{NH}_{4} \mathrm{Cl}=14+1 \times 4+35.5=53.5$ $53.5 \mathrm{gof} \mathrm{NH}_{4} \mathrm{Cl}$ absorb 2.94 kJ 5.35 g of $\mathrm{NH}_{4} \mathrm{Cl}$ absorb $\frac{5.35 \times 2.94}{53.5}$
19	A	Formula mass of ethanol, $\mathrm{CH} 3 \mathrm{CH} 2 \mathrm{OH}=12+3+12+2+16+1=46$ Heat $=$ mc $\theta=(100 \times 4.2 \times 30) \mathrm{J}$ 2.3 g of ethanol produce $(100 \times 4.2 \times 30) \mathrm{J}$ 46 g of ethanol produce $\frac{0.1 \times 4.2 \times 30 \times 46}{2.3} \mathrm{~J}$
20	D	2.4 g of magnesium produce 13.6 kJ 24 g of magnesium produce $\frac{24 \times 13.6}{2.4}$
21	B	Formula mass of butane, $\mathrm{C}_{4} \mathrm{H}_{10}=4 \times 12+1 \times 10=58$ 2877 kJ is produced by 58 g of butane 950 kg is produced by $\frac{58 \times 950}{2877}$

22 (a) Enthalpy of neutralization is enthalpy change when 1 mole of water is formed from aqueous hydrogen and hydroxyl ions.

	(b)	(i) $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ (ii) total volume of water $=50+50=100 \mathrm{~cm}^{3}$ Mass of water $=100 \times 1=100 \mathrm{~g}$ Heat liberated $=\mathrm{mc} \theta=100 \times 4.2 \times 13.6=5712 \mathrm{~J}$ Mole of water formed $=$ moles $\mathrm{NaOH}=\frac{50 \times 2}{1000}=0.1$ mole Production of 0.1 mole of water produce 5712J 1 mole of water produced $\frac{5712 \times 1}{0.1} 57120 \mathrm{~J}=57.12 \mathrm{kJmol}^{-1}$
23	(a)	Cow dung, water, plant remaining
	(b)	Formula mass of $\mathrm{CH}_{4}=12+4=16$ 890 kJ areproduced by 16 g of methane 2670 kJ are produced by $\frac{16 \times 2670}{890}=48 \mathrm{~g}$
24	(a)	$\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
	(b)	total volume of water $=50+50=100 \mathrm{~cm}^{3}$ Mass of water $=100 \times 1=100 \mathrm{~g}$ Temperature change $=35-22=13^{\circ} \mathrm{C}$ Heat liberated $=m c \theta=100 \times 4.2 \times 13=5460 \mathrm{~J}$ Mole of water formed $=$ moles $\mathrm{NaOH}=\frac{50 \times 2}{1000}=0.1$ mole Production of 0.1 mole of water produce 5460 J 1 mole of water produced $\frac{5460 \times 1}{0.1} 54600 \mathrm{~J}=54.6 \mathrm{kJmol}^{-1}$
(b)		It would be less because ammonia is a weak base

25	(a)	$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
	(b)	Formula mass of $\mathrm{CH}_{4}=12+4=16$ 882 kJ are produce by 24 I 1746kJ require $\frac{1746 \times 24}{882}=47.5 l$ Cost of 47.5I of methane $=47.5 \times 600=28500 /=$
26		Ethnalpy of combustion is entalpy change when 1 mole of a substance is completely burnt in oxygen.
		Experimental method for finding enthalpy of combustion a liquid fuel The figure below shows a simple method for obtaining approximate value for the enthalpy of combustion of a propanol. Thermometer record rise in temperature, $\theta^{0} \mathrm{C}$ Heat shield reduces heat loss Metal calorimeter and water both of known heat capacity C, Jk-1 Spirit burner contains propanol, weight before and after gives mass of fuel burnt $=m_{1}$ g Calculations Assumption Heat produced by = Heat gained by combusting fuel - calorimeter and water Heat gained by calorimeter and water $=\mathrm{C} \Theta$ joules It implies that $\mathrm{m}_{1} \mathrm{~g}$ of fuel produce $=\mathrm{C}$ joules Mr (mass equivalent to 1 mole of fuel) produces $=\frac{M r C \theta}{m_{1}}$ joulesmol $^{-1}$

	(b)	Mass of water $=150 \times 1=150 \mathrm{~g}$ Heat $=\mathrm{mc} \theta=150 \times 4.2 \times 21.5=13545 \mathrm{~J}$ 0.54 gof propanol produce 13545 J 60 g of propanol produce $\frac{13545 \times 60}{0.54}=1505 \mathrm{~kJ}$
27	(a)Formula mass of ethane $\mathrm{C}_{2} \mathrm{H}_{6}=2 \times 12+6 \times 1=30$ Formula mass of water, $\mathrm{H}_{2} \mathrm{O}=1 \times 2+16=18$ $(2 \times 30) \mathrm{g}$ of ethane produce $(6 \times 18) \mathrm{g}$ of water 2 g of ethane produce $\frac{2 \times 6 \times 18}{2 \times 30}=3.6 \mathrm{~g}$ of water	
(b)2 g of ethane produce 104 kJ $30 \mathrm{~g}\left(1\right.$ mole) of ethane produce $\frac{30 \times 104}{2} 1560 \mathrm{~kJ}$		
28	(a)Enthalpy of combustion is the enthalpy change when 1 mole of a substance is burnt completely in oxygen.	
(b)Formula mass of ethanol $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=2 \times 12+6+16=46$ Mass of water $=$ volume of water $=1000 \mathrm{~g}$ Heat $=$ mc $\theta=1000 \times 10 \times 4.2=42000 \mathrm{~J}$ 2 g of ethanol produce 42000 30 g of ethanol produce $\frac{420000 \times 30}{2} 630 \mathrm{~kJ}$		

