O-level

S.t.p (standard temperature and pressure) and r.t.p (room temperature and pressure)

GASES
It is not convenient to weigh gases. They are normally measured by volumes.
Avogadros law
Equal moles of any gase, under the same conditions of temperature and pressure occupy equal volumes.
a. At s.t.p. 1 mole of any gas occupy $22.4 \mathrm{dm}^{3}$ or $22400 \mathrm{~cm}^{3}$. This volume is called the molar volume at s.t.p.
b. At r.t.p. 1 mole of any gas occupy $24 \mathrm{dm}^{3}$ or $24000 \mathrm{~cm}^{3}$. This volume is called the molar volume at r.t.p.

Example1

Calculate the mass of magnesium required to produce 2.24 litres of hydrogen at s.t.p on the reaction with dilute sulphuric acid
$[\mathrm{Mg}=24$, molar volume at s.t. $\mathrm{p}=22.4 \mathrm{~L}]$
Solution: $\quad \mathrm{Mg}(\mathrm{s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{MgSO} 4(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
1 mole of Mg produce 1 mole of H_{2}
1 mole of Mg produced 22.4 L of H_{2}
But 1 mole of mg weigh 24 g
22.4 L of H_{2} require 24 g of Mg
2.24 L of H_{2} require $\frac{2.24 \times 24}{22.4}=2.4 \mathrm{~g}$ of Mg

Example 2

Magnesium reacts with chlorine when heated, according to the equation
$\mathrm{Mg}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{Mg} \mathrm{Cl}_{2}(\mathrm{~s})$
Calculate the volume of chlorine that will react completely with 0.6 g of magnesium. $\left(1\right.$ mole of gas at $\left.\mathrm{stp}=22.4 \mathrm{dm}^{3}, \mathrm{Mg}=24\right)$

Solution

From equation
24 g of Mg react with $22.4 \mathrm{dm}^{3}$ of chlorine
$\therefore 0.6 \mathrm{~g}$ of Mg react with $\frac{0.6 \times 22.4}{24}=0.56 \mathrm{dm}^{3}$ of chlorine

Example3

Ammonia is oxidised by copper II oxide according to the equation

$$
2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{CuO}(\mathrm{~s}) \rightarrow 3 \mathrm{Cu}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{N}_{2}(\mathrm{~g})
$$

What volume of ammonia gas will be oxidised by 6.0 g of copper II oxide at s.t.p? $(\mathrm{Cu}=$ $64, \mathrm{O}=16$, Molar volume of gas at s.t. $\mathrm{p}=22.41$)
Solution
Formula mass of $\mathrm{CuO}=64+16=80 \mathrm{~g}$
(3×80) g of CuO require (2×22.4) 1 of ammonia
6.0 g of CuO require $\frac{2 \times 22.4 \times 6.0}{2 \times 80}=1,12$ l of ammonia

Example 4

Calculate the molar masses of the following gas at s.t.p?
(One mole of a gas occupies $22.4 \mathrm{dm}^{3}$ at s.t.p.
(a) 0.8 g of gas X occupies 560 cm 3 (s.t.p)

Solution

$560 \mathrm{~cm}^{3}$ weigh 0.8 g
1 mole or $22400 \mathrm{~cm}^{3}$ weigh $\frac{0.8 \times 22400}{560}=32 \mathrm{~g}$
\therefore formula mass of $\mathrm{X}=32$ (remember formula mass has no units)
(b) $1.12 \mathrm{dm}^{3}$ of gas y measured at s.t.p weighted 1.5 g

Solution

$1.12 \mathrm{dm}^{3}$ weigh 1.5 g
1 mole or $22.4 \mathrm{dm}^{3}$ weigh $\frac{01,522.4}{1.12}=30 \mathrm{~g}$
\therefore formula mass of $\mathrm{Y}=30$

Exercise

1 Calcium carbide reacts with water to produce a gas according to the following equation
$\mathrm{CaC}_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2} \mathrm{~g}+\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$
The volume of a gas produced at s.t.p when 6.4 g of calcium carbide reacts completely with water is $(\mathrm{Ca}=40, \mathrm{C}=12)$
A. $\frac{6.4 \times 64}{31}$
B. $\frac{22.4}{64 \times 6.4}$
C. $64 \times 6.4 \times 22.4$
D. $\frac{6.4 \times 22.4}{64}$

Copper carbonate when heated in air decompose according to the following equation
$\mathrm{CuCO}_{3}(\mathrm{~s})$ heat $\mathrm{CuO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
What volume of carbon dioxide is produced at s.t.p when 0.5 mole of copper (II) oxide is formed? $(\mathrm{Cu}=64, \mathrm{O}=16, \mathrm{C}=12)$
A. $112.0 \mathrm{~L} \quad$ B. 44.0 L
C. 22.4 L
D. 11.2 L

Methane burns in oxygen according to the following equation
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
If $10 \mathrm{~cm}^{3}$ of methane and 20 cm 3 of oxygen are mixed and exploded, the final products cooled to room temperature, the final volume is
A. $10 \mathrm{~cm}^{3}$
B. $15 \mathrm{~cm}^{3}$
C. $25 \mathrm{~cm}^{3}$
D. $30 \mathrm{~cm}^{3}$

4
A. Ammonia
B. Chlorine
C. carbon monoxide
D. sulphur dioxide

5 Steam reacts with methane according to the following equation
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$
What volume of a gas will remain when $30 \mathrm{~cm}^{3}$ of methane is reacted with $20 \mathrm{~cm}^{3}$ of steam?
A. $20 \mathrm{~cm}^{3}$
B. $50 \mathrm{~cm}^{3}$
C. $70 \mathrm{~cm}^{3}$
D. $80 \mathrm{~cm}^{3}$
6. Ammonia is oxidized by copper oxide according to the equation
$2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{CuO}(\mathrm{s}) \rightarrow 3 \mathrm{Cu}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{N}_{2}(\mathrm{~g})$
The volume of ammonia oxidised by 6.0 g of copper oxide s.t.p is?
(one mole gas occupies $22.4 \mathrm{dm}_{3}$ at s.t.p)
A. $\frac{80}{6} \times \frac{3}{2} \times 22400$
B. $\frac{80}{6} x \frac{2}{3} \times 22400$
C. $\frac{6}{80} \times \frac{3}{2} \times 22400$
D. $\frac{6}{80} \times \frac{2}{3} \times 22400$

7 What volume of ammonia at s.t.p will be produced when $15 \mathrm{~cm}^{3}$ of nitrogen react completely with hydrogen according to the following equation?
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$ Type equation here.
A. 7.5 cm 3
B. $15 \mathrm{~cm}^{3}$
C. $30 \mathrm{~cm}^{3}$
D. $45 \mathrm{~cm}^{3}$
8. Zinc reacts with hydrochloric acid according to the following equation $\mathrm{Zn}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
The volume of hydrogen liberated at s.t.p when 13.0 g of zinc reacts with the acid
is ($\mathrm{Zn}=65, \mathrm{H}=1, \mathrm{O}=16$)
A. $\frac{65 \times 13}{22.4}$
B. $\frac{13 \times 22.4}{65}$
C. $\frac{13}{65 \times 22.4}$
D. $\frac{65 \times 22.4}{13}$
9. Propene burns in oxygen according to equation
$2 \mathrm{C}_{3} \mathrm{H}_{6}(\mathrm{~g})+9 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
When 2.1 g of propene is completely burnt in oxygen, the volume carbon dioxide produced at room temperature is
A. $1.2 \mathrm{dm}^{3}$
B. $2.4 \mathrm{dm}^{3}$
C. $3.6 \mathrm{dm}^{3}$
D. $4.8 \mathrm{dm}^{3}$

10 Magnesium reacts with chlorine according to the following equation $\mathrm{Mg}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{g}) \longrightarrow \mathrm{MgCl}^{2}(\mathrm{~s})+\mathrm{H}^{2}(\mathrm{~g})$
The volume of chlorine in litres, at s.t.p that react completely with 0.6 g of magnesium is (1 mole of a gas occupies $22.4 \mathrm{dm}^{3}$ at s.t.p, $\mathrm{Mg}=24$)
A. $\frac{0.6 \times 22.4}{24}$
B. $\frac{0.6 \times 22.4}{24 \times 2}$
C. $\frac{0.6 \times 24}{22.4}$
D. $\frac{0.6 \times 22.4}{22.4 \times 2}$
$1180 \mathrm{~cm}^{3}$ of hydrogen and $80 \mathrm{~cm}^{3}$ of oxygen are allowed to react. What volume of gas remains unreacted?
A. $40 \mathrm{~cm}^{3}$
B. $80 \mathrm{~cm}^{3}$
C. $120 \mathrm{~cm}^{3}$
D. $160 \mathrm{~cm}^{3}$

12 Zinc reacts with hydrochloric acid according to the following equation $\mathrm{Zn}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
The volume of hydrogen liberated at s.t.p when 13.0 g of zinc reacts with the acid is $(\mathrm{Zn}=65, \mathrm{H}=1, \mathrm{O}=16)$
$\begin{array}{ll}\text { A. } 2.24 \mathrm{dm}^{3} & \text { B. } 4.48 \mathrm{~cm}^{3}\end{array}$
C. $22.4 \mathrm{dm}^{3}$
D. $11.2 \mathrm{dm}^{3}$

13 Nitrogen monoxide reacts with oxygen according to the following equation $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
What volume of oxygen would react with $200 \mathrm{~cm}^{3}$ of oxygen monoxide?
A. $100 \mathrm{~cm}^{3}$
B. $200 \mathrm{~cm}^{3}$
C. $300 \mathrm{~cm}^{3}$
D. $400 \mathrm{~cm}^{3}$

14 Sulphuric acid reacts with zinc according to the following equation $\mathrm{Zn}(\mathrm{s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \longrightarrow \mathrm{ZnSO} 4(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
The number of moles of zinc that will react with excess sulphuric acid to produce $60 \mathrm{~cm}^{3}$ of hydrogen at room temperature is (one mole of a gas at r.t.p is $24 \mathrm{dm}^{3}$)
A. 0.0025
B. 0.005
C. 0.025
D. 0.05

15 Calcium carbonate reacts dilute hydrochloric acid according to the following equation
$\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{CaCl}_{2}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
What volume of carbon dioxide would be evolved at s.t.p when 1 g of calcium carbonate is reacted with excess hydrochloric acid?
($\mathrm{Ca}=40, \mathrm{H}=1, \mathrm{Cl}=35.5, \mathrm{O}=16$, one mole of a gas occupies $22.4 \mathrm{dm}^{3}$ at s.t.p)
A. $2240 \mathrm{~cm}^{3}$
B. $224 \mathrm{~cm}^{3}$
C. $112 \mathrm{~cm}^{3}$
D. $448 \mathrm{~cm}^{3}$

16 Carbon dioxide is produced from sodium hydrogen carbonate according to the following equation
$2 \mathrm{NaHCO}_{3}(\mathrm{~s})$ heat $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
The volume in litres of carbon dioxide evolved at s.t.p when 21.0 g of sodium hydrogen carbonate is heat is
$\left(\mathrm{NaHCO}_{3}=84,1\right.$ mole of a gas at s.t.p occupies $\left.22.4 \mathrm{dm}^{3}\right)$
A. $\left(\frac{21}{168} \times \frac{1}{2} \times 22.4 l\right)$
B. $\left(\frac{168}{21} \times 2 \times \frac{1}{22.4} l\right)$
C. $\frac{21}{84} \cdot\left(x \frac{1}{2} \times 22.4 l\right)$
D. $\left(\frac{84}{21} \times 2 \times \frac{1}{22.4} l\right)$

17 Calculate the relative molecular mass of gas P , if $8.4 \mathrm{dm}^{3}$ of the gas at s.t.p has a mass of 0.93 g (1 mole of a gas at s.t.p occupies $22.4 \mathrm{dm}^{3}$)
A. $\left(\frac{0.93 \times 22.4}{8.4}\right)$
B. $\left(\frac{8.4 \times 22.4}{0.93}\right)$
C. $\left(\frac{0.93 \times 8.4}{22.4}\right)$
D. $\left(\frac{0.93}{8.4 \times 22.4}\right)$

18 When 2.5 g of a solid is heated, $560 \mathrm{~cm}^{3}$ of a gas was produced at s.t.p and a residue of 1.4 g was left. The molecular mass of the gas is
(1 mole of a gas at s.t.p is $22400 \mathrm{~cm}^{3}$).
A. $\left(\frac{22400 \times 2.5}{560} \mathrm{~cm}^{3}\right)$
B. $\left(\frac{22400 \times 1.4}{560} \mathrm{~cm}^{3}\right)$
C. $\left(\frac{22400 \times 1.1}{560} \mathrm{~cm}^{3}\right)$
D. $\left(\frac{22400}{560} \mathrm{~cm}^{3}\right)$

19 What mass of ethane gas $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right) \mathrm{Mr}=30$ will occupy the same volume as 8 g of methane $\left(\mathrm{CH}_{4}\right) \mathrm{Mr}=16$ at s.t.p?
(molar gas volume at s.t.p $=22.4 \mathrm{dm}^{3}$)
A. $\frac{16}{30} \times 8$
B. $\frac{8}{16} \times 30$
C. $\frac{16}{8} \times 30$
D. $\frac{8}{30} \times 16$

20 The mass of $560 \mathrm{~cm}^{3}$ of a gas X is 1.10 g at s.t.p. the relative formula mass of the gas is (Molar gas volume at s.t. $\mathrm{p}=22400 \mathrm{~cm}^{3}$)
A. $\frac{22400}{1.1} \times 560$
B. $\frac{1.1}{560} \times 22400$
C. $\frac{1.1}{22400} \times 560$
D. $\frac{560}{1.1} \times 22400$

21 Ammonia is oxidized by copper oxide according to the equation $2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{CuO}(\mathrm{s}) \rightarrow 3 \mathrm{Cu}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{N}_{2}(\mathrm{~g})$
The volume of ammonia oxidised by 6.0 g of copper oxide s.t.p is?
(one mole gas occupies $22.4 \mathrm{dm}_{3}$ at s.t.p)
A. $\frac{80}{6} \times \frac{3}{2} \times 22400$
B. $\frac{80}{6} \times \frac{2}{3} \times 22400$
C. $\frac{6}{80} \times \frac{3}{2} \times 22400$
D. $\frac{6}{80} x \frac{2}{3} \times 22400$

22 Calcium hydrogen carbonate when heated decompose according to the equation $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} \longrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
The volume of carbon dioxide evolved at s.t.p when 27 g of hydrogen carbonate is heated is ($\mathrm{H}=1, \mathrm{C}=12, \mathrm{Ca}=40, \mathrm{O}=16,1$ mole of a gas occupies $22.4 \mathrm{dm}^{3}$ at
s.t.p)
A. 27×22.4
B. $\frac{162}{27 \times 22.4}$
C. $\frac{2 \times 27 \times 22.4}{162}$
D. $\frac{162}{2 \times 27 \times 22.4}$

23 Methane burns in oxygen according to the equation
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
The volume of methane that remains unburnt when $50 \mathrm{~cm}^{3}$ of methane is reacted with $40 \mathrm{~cm}^{3}$ of oxygen is
A. $10 \mathrm{~cm}^{3}$
B. $20 \mathrm{~cm}^{3}$
C. $30 \mathrm{~cm}^{3}$
D. $45 \mathrm{~cm}^{3}$

24 Hydrogen chloride reacts with ammonia according to the following equation $\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g}) \longrightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{g})$
The mass of ammonium chloride formed when excess ammonia is reacted with $0.56 \mathrm{dm}^{3}$ of hydrogen chloride at s.t.p is ($\mathrm{N}=14, \mathrm{H}=1, \mathrm{Cl}=35.5$)
A. $\frac{0.56 \times 22.4}{53.5}$
B. $\frac{53.5 \times 0.56}{22.4}$
C. $\frac{0.56 \times 50.5}{50.5}$
D. $\frac{0.56 \times 50.5}{22.4}$

25 Copper (II) oxide reacts with hydrogen according to the equation $\mathrm{CuO}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
The volume of hydrogen in litres, required to react completely with $16,0 \mathrm{~g}$ of copper (II) at s.t.p is $(\mathrm{Cu}=64, \mathrm{O}=16$, one mole of a gas occupies 22.41 at s.t.p)
A. 1.1.2
B. 2.24
C. 4.48
D. 11.20

26 Hydrogen burns in oxygen according to the following equation $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
The mass of steam formed when $100 \mathrm{~cm}^{3}$ of hydrogen is burnt in excess oxygen is at s.t.p is ($\mathrm{H}=1, \mathrm{O}=16$, one mole of a gas occupies 22.41 at s.t.p)
A. 0.04 g
B. 0.08 g
C. 0.12 g
D. 0.16 g

27 Propane burns in oxygen according to equation
$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
When 101 of propene is completely burnt in oxygen, the volume of oxygen used at room temperature is
A. 51
B. 101
C. 151
D. 501

28 Glucose burn in oxygen according to the following equation $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+$ energy
The volume of oxygen at s.t.p that is required to produce 150 g of carbon dioxide is ($\mathrm{H}=1, \mathrm{C}=12, \mathrm{O}=16,1$ mole of a gas at s.t.p occupies $22.4 \mathrm{dm}^{3}$)
A. $\frac{150 \times 22.4 \mathrm{~cm}^{3}}{44}$
B. $\frac{50 \times 22.5}{44 \times 6}$
C. $\frac{44}{150 \times 22.4}$
D. $\frac{44 \times 6}{150 \times 22.4}$

29 On heating sodium nitrate produces sodium nitrite and oxygen according to the following equation
$2 \mathrm{NaNO}_{3}(\mathrm{~s}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})$
The mass of sodium nitrite formed when $480 \mathrm{~cm}^{3}$ of oxygen was evolved at room temperature. $\left(\mathrm{Na}=23, \mathrm{~N}=14, \mathrm{O}=16,1\right.$ mole of a gas occupies $24 \mathrm{dm}^{3}$ at s.t.p)
A. 1.38 g
B. 2.76 g
C. 5.52 g
D. 0.114 g
30. When 3.0 g of X was heated, 210 cm 3 of a gas was evolved at s.t.p and 2.4 g of solid remained. The relative molecular mass of the gas is $[1$ mole of a gas at s.t.p occupies $22.4 \mathrm{dm}^{3}$ at s.t.p]
A. $\frac{0.6 \times 22400}{210}$
B. $\frac{3 \times 22400}{210}$
C. $\frac{2.422400}{210}$
D. $\frac{5.4 \times 22400}{210}$

31 Calcium carbonate decompose according to the equation
$\mathrm{CaCO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
The maximum volume of carbon dioxide produced at s.t.p when 100 g of calcium carbonate is heated is $\left(\mathrm{Ca}=4=, \mathrm{O}=16,1\right.$ mole of a gas occupies $22.4 \mathrm{dm}^{3}$ at s.t.p.)
A. $\frac{10 \times 22.4}{100} d m^{3}$
B. $\frac{10 \times 100}{22.4} \mathrm{dm}^{3}$
C. $\frac{22.4}{10 \times 100} \mathrm{dm}^{3}$
D. $\frac{100}{10 \times 22.4} \mathrm{dm}^{3}$

32 Methane burns in oxygen according to the following equation

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \quad \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

The volume of carbon dioxide produced when $20 \mathrm{~cm}^{3}$ of methane is burnt in $40 \mathrm{~cm}^{3}$ of oxygen is
A. $10 \mathrm{~cm}^{3}$
B. $20 \mathrm{~cm}^{3}$
C. $40 \mathrm{~cm}^{3}$
D. $60 \mathrm{~cm}^{3}$

33 Propane burns in air according to the following equation
$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Which of the following is the volume of air required for complete combustion of $60 \mathrm{~cm}^{3}$ of propane?
(The percentage of oxygen in air is 21%)
A. $\frac{5 \times 100}{24} \mathrm{~cm}^{3} \quad$ B. $\frac{21 \times 5 \times 60}{100} \mathrm{~cm}^{3} \quad$ C. $\frac{5 \times 60 \times 100}{21} \quad$ D. $\frac{10060}{5 \times 21} \mathrm{~cm}^{3}$

In each of the questions 34 to 35 one or more of the answers given may be correct. Read each question carefully and then indicate the correct answer according to the following
A. If $1,2,3$, only are correct

Commented [S1]:

Commented [S2R1]:
Commented [S3R1]:
B. If 1 and 3 only are correct
C. If 2 and 4 only are correct
D. If 4 only is correct
34. Which of the following contains the same volume as 8.0 g of oxygen at s.t.p?

1. $\quad 17.0 \mathrm{~g}$ of ammonia
2. 22.0 g of carbon dioxide
3. 2.0 g of hydrogen
4. 7 g of nitrogen
5. Which one of the following contains the same number of moles as $2.4 \mathrm{dm}^{3}$ of hydrogen gas at room temperature?
(1 mole of a gas occupies $24 \mathrm{dm}^{3}$ at room temperature)
6. $\quad 17 \mathrm{~g}$ of ammonia
7. $\quad 1.7 \mathrm{~g}$ of ammonia
8. $\quad 35.5 \mathrm{~g}$ of chlorine
9. $\quad 3.55 \mathrm{~g}$ of chlorine

show clear working

36 Sulphuric acid reacts with potassium hydrogen carbonate according to the equation $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{KHCO}_{3}(\mathrm{aq}) \longrightarrow \mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Calculate the volume of carbon dioxide produced at s.t.p when 20 cm 3 of 0.5 M sulphuric acid is reacted with excess potassium hydrogen carbonate
37 Sulphur dioxide combine with air to form sulphur trioxide according to the equation $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
Calculate the volume of sulphur trioxide that would be formed when $20 \mathrm{~cm}^{3}$ of sulphur dioxide was reacted with $100 \mathrm{~cm}^{3}$ of oxygen.
38 Copper carbonate reacts dilute hydrochloric acid according to the following equation $\mathrm{CuCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{CuCl}_{2}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
What volume of carbon dioxide would be evolved at s.t.p when 6.2 g of copper (II) carbonate is reacted with excess hydrochloric acid?
$\left(\mathrm{Cu}=64, \mathrm{H}=1, \mathrm{Cl}=35.5, \mathrm{O}=16\right.$, one mole of a gas occupies $22.4 \mathrm{dm}^{3}$ at s.t.p)
39 Hydrogen chloride gas reacts with silver nitrate according to the equation $\mathrm{HCl}(\mathrm{g})+\mathrm{AgNO}_{3}(\mathrm{aq}) \longrightarrow \mathrm{AgCl}(\mathrm{s})+\mathrm{HNO}_{3}(\mathrm{aq})$

Calculate the mass of silver chloride produced when $1.2 \mathrm{dm}^{3}$ of hydrogen chloride gas is bubbled through silver nitrate at room temperature.
$\left(\mathrm{Ag}=108, \mathrm{H}=1, \mathrm{Cl}=35.5, \mathrm{O}=16, \mathrm{~N}=14\right.$ one mole of a gas occupies $22.4 \mathrm{dm}^{3}$ at s.t.p)

40 Nitrogen reacts with hydrogen to form ammonia according to the following equation $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
Calculate the volume of ammonia produced at s.t.p when 18.5 g of hydrogen gas reacted with excess nitrogen
[$\mathrm{H}=1, \mathrm{~N}=14,1$ mole of a gas occupies $22.4 \mathrm{dm}^{3}$ at s.t.p)
41. Potassium chlorate (V) decompose according to the following equation
$2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$
Calculate the volume of oxygen at room temperature when 16 g of potassium chlorate (V) is heated
($\mathrm{K}=39 . \mathrm{O}=1, \mathrm{Cl}=35.5,1$ mole of a gas at r.t.p $24 \mathrm{dm}^{3}$)
42 Sulphur dioxide can be prepared by roasting zinc sulphide according to the following equation
$2 \mathrm{ZnS}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{ZnO}(\mathrm{s})+2 \mathrm{SO}_{2}(\mathrm{~g})$
Calculate the volume of sulphur dioxide evolved at room temperature when 9.7 g of zinc sulphide is reacted with excess oxygen
$\left(\mathrm{Zn}=65, \mathrm{~S}=32, \mathrm{O}=16\right.$, 1 mole of a gas occupies $24 \mathrm{dm}^{3}$ at room temperature)

Answers

Working

1. D Formula mass of $\mathrm{CaC}_{2}=40+12 \times 2=64$

64 g produce $22,4 \mathrm{dm}^{3}$ of gas
6.4 g produce $\frac{6.4 \times 22.4}{64}$
2. D 1 mole of CuCO_{2} produce $22.4 \mathrm{dm}^{3}$
0.5 mole produce $\frac{22.4 \times 0.5}{1}=11.2 \mathrm{~L}$
3. $10 \mathrm{~cm}^{3}$ of methane react with $20 \mathrm{~cm}^{3}$ of oxygen to produce $10 \mathrm{~cm}^{3}$ of CO_{2}
4. C
5. A $(2 \times 22400) \mathrm{cm}^{3}$ of steam reacts with $22400 \mathrm{~cm}^{3}$ of methane
$\therefore 20 \mathrm{~cm}^{3}$ of steam react with $\frac{20 \times 22400}{2 \times 22400}=10 \mathrm{~cm}^{3}$
The volume of methane that did not react $=30-20=20 \mathrm{~cm}^{3}$
6. D Formula mass of copper oxide, $\mathrm{CuO}=64+16=80$
(3×80) g of CuO react with $(2 \times 22400) \mathrm{cm}^{3}$
$\therefore 6 \mathrm{~g}$ of CuO will oxidise $\frac{2 \times 22400 \times 6}{3 \times 80} \mathrm{~cm}^{3}$
7. C $1 \mathrm{~cm}^{3}$ of N_{2} form $2 \mathrm{~cm}^{3}$ of ammonia
$\therefore 15 \mathrm{~cm}^{3}$ of N_{2} form $\frac{2 \times 15}{1}=30 \mathrm{~cm}^{3}$
8. B 65 g of zinc liberate $22.4 \mathrm{dm}^{3}$ of hydrogen

13 g of zinc liberate $\frac{13 \times 22.4}{65} \mathrm{~cm}^{3}$
9. Cormula mass of propane $3 \times 12+6 \times 1=42$
$42 \times 2 \mathrm{~g}$ of propane produce $(6 \times 24) \mathrm{dm}^{3}$
2.1 g of propane produces $\frac{6 \times 24 \times 2.1}{42 \times 2}=3.6 \mathrm{dm}^{3}$
10. A 24 g of magnesium produce $22.4 \mathrm{dm}^{3}$
0.6 g of magnesium produce $\frac{0.6 \times 22.4}{24} \mathrm{dm}^{3}$
11. A Reaction equation
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HO}^{(\mathrm{l})}$
$2 \times 22400 \mathrm{~cm}^{3}$ of oxygen react with $22400 \mathrm{~cm}^{3}$ of oxygen
$80 \mathrm{~cm}^{3}$ of hydrogen react with $\frac{80 \times 22400}{2 \times 22400}=40 \mathrm{~cm}^{3}$
Unreacted oxygen $=80-40=40 \mathrm{~cm}^{3}$
12. B 65 g of produces 22.4 dm 3 of hydrogen

13 g of zinc produce $\frac{22.4 \times 13}{65}=4.48 \mathrm{dm}^{3}$
13 A $(2 \times 22400) \mathrm{cm}^{3}$ of nitrogen monoxide react with $22400 \mathrm{~cm}^{3}$ of oxygen $200 \mathrm{~cm}^{3}$ of nitrogen monoxide will react with $\frac{22400 \times 200}{2 \times 22400}=100 \mathrm{~cm}^{3}$
14 A $24000 \mathrm{~cm}^{3}$ of hydrogen require 1 mole of zinc
$60 \mathrm{~cm}^{3}$ of hydrogen require $\frac{60 \times 1}{24000}=0.0025 \mathrm{moles}$ of Zn
15 B Formula mass of $\mathrm{CaCO}_{3}=40+12+16 \times 3=100$
$100 \mathrm{~g}^{\text {of } \mathrm{CaCO}_{3} \text { produce } 22400 \mathrm{~cm}^{3} \text { of carbon dioxide }}$
$1 \mathrm{~g} \mathrm{of}_{\mathrm{CaCO}}^{3} 3$ produce $\frac{1 \times 22400}{100}=224 \mathrm{~cm}^{3}$
$16 \mathrm{C}(2 \times 84) \mathrm{g}$ of NaHCO_{3} produce 22.41 of carbon dioxide
21 g of NaHCO_{3} produce $\frac{21 \times 22.4}{2 \times 84}$
17 A $8.4 \mathrm{dm}^{3}$ of P weigh 0.93 g
$22.4 \mathrm{dm}^{3}$ (or 1 mole of a gas at s.t.p) will weigh $\frac{22.4 \times 0.93}{8.4} g$

C Mass of the gas $=2.5-1.5=1.1 \mathrm{~g}$
$560 \mathrm{~cm}^{3}$ of P weigh 1.1 g
$22400 \mathrm{~cm}^{3}$ (or 1 mole of a gas at s.t.p) will weigh $\frac{22400 \times 1.1}{560} \mathrm{~g}$
C Equal moles of a gas occupy the same volume at the same temperature Therefore, 16 g of CH_{4} occupy the same volume as 30 g of $\mathrm{C}_{2} \mathrm{H}_{6}$

$$
8 \mathrm{~g} \text { of } \mathrm{CH}_{4} \text { occupies } \frac{30 \times 16}{8}
$$

B $\quad 560 \mathrm{~cm}^{3}$ of P weigh 1.10 g
$22400 \mathrm{~m}^{3}$ (or 1 mole of a gas at s.t.p) will weigh $\frac{22400 \times 1.10}{560} g$
21 D Formula mass of copper oxide, $\mathrm{CuO}=64+16=80$ (3×80) g of CuO react with $(2 \times 22400) \mathrm{cm}^{3}$
$\therefore 6 \mathrm{~g}$ of CuO will oxidise $\frac{2 \times 22400 \times 6}{3 \times 80} \mathrm{~cm}^{3}$
22 C Formula mass of $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}=40+2(1+12+16 \times 3)=162$
162 g od $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ produce $22.4 \mathrm{dm}^{3}$
27 g of $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ produce $\frac{2722.4}{12} \mathrm{dm}^{3}$
23 C 2 mole of oxygen react with 1 mole of methane
Since moles are directly proportion to volumes of gases
$40 \mathrm{~cm}^{3}$ of oxygen react with $\frac{1 \times 40}{2} 20 \mathrm{~cm}^{3}$
Volume of unreacted methane $=50-20=30 \mathrm{~cm}^{3}$
B Formula mass of $\mathrm{NH} 4 \mathrm{Cl}=14+1 \times 4+35.5=53.5 \mathrm{~g}$
$22.4 \mathrm{dm}^{3}$ of ammonia form 53.5 g of NH 4 Cl
$0.56 \mathrm{gdm}^{3}$ of ammonia form $\frac{0.56 \times 53.5}{22.4} \mathrm{~g}$
C Formula mass of $\mathrm{CuO}=64+16=80 \mathrm{~g}$
80 g of CuO is reduce by 22.41 of hydrogen
16.0 g of CuO is reduce by $\frac{22.4 \times 16}{80}=4.48 \mathrm{dm}^{3}$

26 A Formula mass of $\mathrm{H}_{2} \mathrm{O}$ of $1 \times 2+16=18$
$22400 \mathrm{~cm}^{3}$ of hydrogen produce $\frac{18}{2} g$ of $\mathrm{H}_{2} \mathrm{O}$
$100 \mathrm{~cm}^{3}$ of hydrogen produce $\frac{18 \times 100}{22400 \times 2}=0.04 \mathrm{~g}$
D 1 mole propane react with 5 mole of oxygen
101 of propane react with $5 \times 10=501$ of oxygen
A. Formula mass of $\mathrm{CO}_{2}=12+16 \times 2=44 \mathrm{~g}$
$6 \times 44 \mathrm{~g}$ of carbon dioxide require $6 \times 22.4 \mathrm{dm}^{3}$ of oxygen
150 g of carbon dioxide require $\frac{6 \times 22.4 \times 150}{6 \times 44}=\frac{150 \times 22.4}{44}$
29 B Formula mass of $\mathrm{NaNO}_{2}=23+14+16 \times 2=69$
$24000 \mathrm{~cm}^{3}$ of oxygen is produced with 2×69
$480 \mathrm{~cm}^{3}$ of oxygen is produced with $\frac{2 \times 69 \times 480}{24000}=2.76 \mathrm{~g}$
30 A Mass of a gas $=3.0-2.4=0.6 \mathrm{~g}$
$210 \mathrm{~cm}^{3}$ contain 0.6 g
$24000 \mathrm{~cm}^{3}$ contain $\frac{0.6 \times 24000}{210}$
31 A Formula mass of $\mathrm{CaCO}_{3}=40+12+16 \times 3=100 \mathrm{~g}$

$10 \mathrm{~cm}^{3}$ of CaCO^{3} produce $\frac{24 \times 10}{100} \mathrm{~d} m^{3}$

B 1 mole of methane produce 1 mole of $\mathrm{CO}_{2}(\mathrm{~g})$
$20 \mathrm{~cm}^{3}$ of methane produce same volume of $20 \mathrm{~cm}^{3}$ of CO_{2}
C 1 mole of propane react with 5 moles of oxygen
$60 \mathrm{~cm}^{3}$ of propane react with $(5 \times 60) \mathrm{cm}^{3}$ of oxygen
But $21 \mathrm{~cm}^{3}$ of oxygen is found in $100 \mathrm{~cm}^{3}$ of air
$\therefore(5 \times 60) \mathrm{cm}^{3}$ of oxygen are contained in $\frac{100 \times 5 \times 60}{21} \mathrm{~cm}^{3}$
D Remember oxygen and nitrogen are diatomic gases
C
Moles of sulphuric acid
$1000 \mathrm{~cm}^{3}$ contain 0.5 moles
$20 \mathrm{~cm}^{3}$ contain $\frac{0.5 \times 20}{1000}=0.01$ moles
1 mole od $\mathrm{H}_{2} \mathrm{SO}_{4}$ produce $22.4 \mathrm{dm}^{3}$ of carbon dioxide at s.t.p
0.01 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ produce $\frac{22.40 .01}{1}=0.22 \mathrm{dm}^{3}$

2 mole of $\mathrm{SO}_{2}(\mathrm{~g})$ produce 2 mole of SO_{3}
$\therefore 20 \mathrm{~cm}^{3}$ of SO_{2} produce $20 \mathrm{~cm}^{3}$ of SO_{3}
Formula mass of $\mathrm{CuCO}_{3}=64+12+16 \times 3=124$
124 g of copper carbonate produce 22.4 dm 3
6.2 g of copper carbonate produce $\frac{22.4 \times 6.2}{124}=1.12 \mathrm{~cm}^{3}$

Formula mass of silver chloride, $\mathrm{AgCl}=108+35.5=143.5$
$22.4 \mathrm{dm}^{3}$ of HCl produce 143.5 g of AgCl
$1.2 \mathrm{~cm}^{3}$ of HCl produce $\frac{143.5 \times 1.2}{22.4}=7.6875 \mathrm{~g}$ of silver chloride
40. $\quad 3(1+1) \mathrm{g}$ of hydrogen produce $2 \times 22.4 \mathrm{dm}^{3}$ of ammonia
18.5 g of hydrogen produce $\frac{2 \times 22.4 \times 18.5}{6}=138.1 \mathrm{dm}^{3}$

Formula mass of $\mathrm{KClO}_{3}=39+35.5+16 \times 3=122.5$
(122.5×2)g of KClO_{3} produce $3 \times 22.4 \mathrm{dm}^{3}$ of oxygen at s.t.p
$16 \mathrm{~g}^{\text {of } \mathrm{KClO}_{3} \text { produce } \frac{3 \times 22.4 \times 16}{122.5 \times 2}=4.4 \mathrm{dm}^{3} .42}$
Formula mass of $\mathrm{ZnS}=65+32=97 \mathrm{~g}$
$97 \times 2 \mathrm{~g}$ of ZnS produce $2 \times 24 \mathrm{dm}^{3}$ of SO_{2}
9.7 g of ZnS produce $\frac{2 \times 24 \times 9.7}{97 \times 2}=2.4 \mathrm{dm}^{3}$ of SO_{2}

