Digital Teachers Digitalteachers.co.ug

O-level

THE EMPIRICAL FORMULA

The **empirical formula** of a compound is the simplest formula, which shows the ratio of the atoms present in a compound or a molecule by mass.

The **molecular formula** of a compound is the formula, which shows the number of each kind of atoms present in the compound.

TO CALCULATE THE EMPIRICAL FORMULAE

Example **I**

Sodium sulphate has the following composition by mass; sodium 32.4% sulphur 22.5% and oxygen 45.1%.

Elements	Na	S	O
percentage	32.4	22.5	45.1
Relative atomic masses	23	32	16
(RAM)			
$Moles = \frac{percentage}{RAM}$	$\frac{32.4}{23} = 1.4$	$\frac{22.5}{32} = 0.7$	$\frac{45.1}{16} = 2.8$
Mole ratio			
(divide by smallest value)	2	1	4
Empirical formula	Na_2SO_4		

Example 2

A compound contains oxygen and copper only. The molecular mass is 159.0. What is its Empirical and molecular formula if the percentage of copper is 76

Solution

Percentage of oxygen = 100 - 76 = 24%

Elements	Cu		O	
percentages	76		24	
Relative atomic mass	64		16	
Number of moles = $\frac{percentage}{RAM}$		$\frac{76}{64} = 1.875$		$\frac{24}{16} = 1.5$
Mole ratio (divide by smallest value)		$\frac{1.875}{1.5} = 1$		$\frac{1.5}{1.5} = 1$

Empirical formula

CuO

Molecular formula (CuO)n 159 = 64n + 16n= 159 80n 159 = 159 n 80 1.987 n 2 (always **n** is a whole number) Therefore molecular formula of $CuO = Cu_2O_2$ Exercise 1. A compound contains 53.3% oxygen, 6.7% hydrogen and 40% carbon. The simplest formula of compound is (C = 12, H = 1 O = 16)A. CHO. B. CH₂O the formula of the oxide (P = 32, 0 = 16)

 $C. C_2H_2O$ CH₂O₂ 2. The oxide of P contains 50% by mass P. Its relative molecular mass is 64. What is

B. PO₂ C. P₂O D. PO₃

3. A white powder is made of 24 percent carbon and 76 percent fluorine atoms. Its simplest formula is

A. CF₂ B. C_2F_4 C. CF₃ D. CF_4

4. 6.6g of am element M, combine with excess oxygen to give 8.1g of oxide. The simplest formula of the oxide is (M = 65, 0 = 16)

A. M_2O B. MO C. MO₂ D. M2O₃

5. 12.7g of metal R, reacts completely with 11.3g of oxygen to form oxide. Which one of the following is the formula of oxide of R? (R = 27, 0 = 16)

B. RO₂ C. R₂O D. R₂O₃

6. A hydrocarbon contains 4.8g of carbon and 0.8g of hydrogen. The empirical formula of the hydrocarbon is

A. C₂H B. CH₄ C. CH₂ D. C_6H

7. An oxide of metal M, contains 86.6% M. the empirical formula of the oxide is (0 =16; M = 207)

A. MO B. M₂O C. MO₂ D. M₂O₃

8. 2.50g of an oxide of metal M, was reduced by hydrogen to 1.98g.

Calculate the moles of atoms of (a)

> (i) M in oxide (M = 64)

Oxygen in the oxide (O = 16)(ii)

Determine the molecular formula of the oxide of M. (1 ½ marks) (b)

Name two other gases that can be used instead of hydrogen (2mark) (c)

9. Hydrocarbon Z of molecular formula 56 consists of 85.7% of carbon by mass.

(a) Define the term hydrocarbon (1marks)

Calculate empirical formula of Z. (b)

Determine the molecular formula of Z. (c)

A Compound Y of molecular formula = 46 consists of 52.2% carbon, 10. 13.0% hydrogen and 34.8% oxygen by mass. (H=1, C=12, O=16)

Calculate the empirical formula of Y (a)

- (b) Determine the molecular formula of Y
- (c) Combustion of Y is highly exothermic. Suggest one use of Y.
- 11. A compound Y consist of 92.31% carbon and 7.69% hydrogen. The formula mass of Y is 26.
 - (a) Calculate the empirical formula of Y
 - (b) Determine molecular formula of Y
 - (c) Write structural formula of Y
- 12. A hydrocarbon, R, contains 80% carbon by mass.
 - (a) Calculate empirical formula of R.
 - (b) If the molecular mass of R is 30. Determine molecular formula of R
 - (c) Write the formula for complete combustion of R
- 13. The molecular mass of gas X is 28 and its empirical formula is CH₂.
 - (a) Determine the molecular formula of X.
 - (b) Write
 - (i) the structural formula of X
 - (ii) the equation for the reaction between X and bromine
 - (c) (i) Name any other reagent that could be used to identify X
 - (ii) State what would be observed if the reagent named in (c)(i) was reacted with X.
- 14. A compound Z of molecular formula AxBy consist of 8.57% A, 45.71% B and 45.72% of water
 - (a) Determine the values of x, y and n. (H=1, O=16, A=27, B=96)
 - (b) Write the molecular formula of Z.
- Excess carbo monoxide was passed over 4.0g of heated oxide of iron Y, 2.8g of iron was formed.
 - (a) Determine the molecular formula of Y. (O = 16, Fe = 56)
 - (b) Write equation for the reaction between Y and carbon monoxide.
- 16. A compound Y, consists 52.17% carbon, 13.04% hydrogen and 34.78% oxygen. The relative molecular mass of Y is 46.
 - (a) Determine the
 - (i) Empirical formula of Y (03mark)
 - (ii) Molecular formula of Y (1mark)
 - (b) When Y was heated with concentrated sulphuric acid, a colourless gas, Z which turned bromine water colourless was evolved. Identify
 - (i) Y
 - (ii) Z.....

Answers

Answers working

1 B

Element	carbon	hydrogen	oxygen
percentage	40	6.7	53
RAM	12	1	16
moles	$\frac{40}{12} = 3.3$	$\frac{6.7}{1} = 6.7$	$\frac{53.3}{16} = 3.3$

		Mole ratio	1	2	1
		Formula	CH ₂ O		
2	В	Element	P	O	
		percentage	50	50	
		RAM	32	16	
		moles	$\frac{50}{32} = 1.6$	$\frac{50}{16} = 3.12$	
		Mole ratio	1	2	
		Formula	PO_2		
3	A				
		Element	С	F	
		percentage	24	76	
		RAM	12	19	
		moles	$\frac{24}{12} = 2$	$\frac{76}{19} = 4$	
		Mole ratio	1	2	
		Formula	CF ₂		
4	A	Element	M	O	
		Mass	6.6	8.1	
		RAM	65	16	
		moles	$\frac{6.6}{65} = 0.1$	$\frac{8.1}{16} = 0.5$	
		Mole ratio	2	1	
		Formula	M_2O		
5	D	Element	R	0	
		Mass	12.7	11.3	
		RAM	27	16	
		moles	$\frac{12.7}{27} = 0.47$	$\frac{11.3}{16} = 0.7$	
		Mole ratio	2	3	
		Formula	R_2O_3		
6	C	Element	С	Н	
		Mass	4.8	0.8	
		RAM	12	1	
		moles	$\frac{4.8}{12} = 0.4$	$\frac{0.8}{1} = 0.8$	
		Mole ratio	1	2	
		Formula	CH ₂		

7		Percentage of oxygen = $100 - 86.6 = 13.4$				
	C	Element	M	O		
		percentage	86.6	13.4		
		RAM	207	16		
		moles	$\frac{86.6}{207} = 0.42$	$\frac{13.4}{16} = 0.84$		
		Mole ratio	1	2		
		Formula	MO_2			

8 (a)(i) Mass of metal,
$$M = 1.98$$

Moles = $\frac{1.98}{65} = 0.031$

(ii) Mass of oxygen =
$$2.50 - 1.98 = 0.52g$$

Moles = $\frac{0.52}{16} = 0.032$

(b)	Element	M	O
	moles	0.031	0.032
	Mole ratio	1	1

Formula: MO

(c) Ammonia

Carbon monoxide

- 9. Hydrocarbon is a substance that contains carbon and hydrogen only (a)
 - (b) Percentage of hydrogen = 100 - 85.7 = 14.3%

Element	С	Н
Percentage	85.7	14.3
RAM	12	1
Moles	$\frac{85.7}{12} = 7.14$	$\frac{14.3}{1} = 14.3$
Mole ratio	1	2

Formula: CH₂

(c)
$$(CH_2)n = 56$$

$$14n = 56$$

$$n = 4$$

Molecular formula C₄H₈

10. (a)	Element	C	Н	0
	Percentage	52.2	13	34.8
	RAM	12	1	16
	Moles	$\frac{52.2}{12} = 4.35$	$\frac{13}{1} = 13$	$\frac{34.8}{16} = 2.175$
	Mole ratio	2	6	1

Formula: C₂H₆O

(b)
$$(C_2H_6O)n = 46$$

 $(12 \times 2 + 1 \times 6 + 16 \times 1)n = 46$
 $n = 1$
therefore, molecular formula: C_2H_6O

(c) Y is used as fuel

11. (a)	Element	С	Н
	Percentage	92.31	7.69
	RAM	12	1
	Moles	$\frac{92.31}{12} = 7.69$	$\frac{7.69}{1} = 7.69$
	Mole ratio	1	1

Empirical formula: CH

(b)
$$(CH)n = 26$$

 $13n = 26$
 $n = 2$
molecular formula C_2H_2

(c)
$$\begin{array}{c} H \\ C = C \\ \end{array}$$

12 (a) Percentage of hydrogen = 100 - 80 = 20%

Element	С	Н
Percentage	80	20
RAM	12	1
Moles	$\frac{80}{12} = 6.7$	$\frac{20}{1} = 20$
Mole ratio	1	3

Formula: CH₃

(b)
$$(CH3)n = 30$$

 $n(12+3) = 30$
 $15n = 30$
 $n = 2$

$$2C_2H_6(g) + 7O_2(g)$$
 $4CO_2(g) + 6H_2O(l)$

13 (a)
$$(CH_2)n = 28$$

$$14n = 28$$

$$n = 2$$

$$molecular\ mass = C_2H_4$$

$$H$$
 $C = C$ H

(b)(ii)
$$C_2H_4 + Br_2 \longrightarrow C_2H_4Br_2$$

- (c)(i) Acidified potassium permanganate
 - (ii) Decolorise
- 14 (a) Formula mass of water, $H_2O = 1x^2 + 16 = 18$

Components	A	В	H_2O
Percentage	8.57	45.71	45.71
RAM	16	96	18
Moles	$\frac{8.57}{16} = 0.53$	$\frac{45.71}{96} = 0.48$	$\frac{45.72}{18} = 2.54$
Mole ratio	1	1	5

$$\mathbf{x} = 1$$

$$y = 1$$

$$n=5$$

- (b) $AB.5H_2O$
- 15 (a) Mass of iron = 2.8gMass of oxygen = 4.0 - 2.8 = 1.2g

Element	Fe	0
Mass	2.8	1.2
RAM	56	16
Moles	$\frac{2.8}{56} = 0.05$	$\frac{1.2}{16} = 0.075$
Mole ratio	2	3

Formula is Fe₂O₃

(b)
$$Fe_2O_3(s) + 3CO(g) \longrightarrow 2Fe(s) + 3CO_2(g)$$

16 (a)(i)

Components	C	Н	O
Percentage	52.17	13.04	34.54
RAM	12	1	16
Moles	$\frac{52.17}{12} = 4.3$	$\frac{13.04}{1} = 13.04$	$\frac{34.54}{16} = 2.1$
Mole ratio	2	6	1

Emperical formula C₂H₆O

(ii)
$$(C_2H_6O)n = 46$$

$$46n = 46$$

$$n = 1$$

molecular formula is C₂H₆O

- (b)(i) Y = Ethanol
 - (ii) Z =Ethene

.....End