## O-level

Digitalteachers.co.ug

## THE EMPIRICAL FORMULA

The empirical formula of a compound is the simplest formula, which shows the ratio of the atoms present in a compound or a molecule by mass.

The molecular formula of a compound is the formula, which shows the number of each kind of atoms present in the compound.

## TO CALCULATE THE EMPIRICAL FORMULAE

## Example I

Sodium sulphate has the following composition by mass; sodium $32.4 \%$ sulphur $22.5 \%$ and oxygen 45.1\%.

| Elements | Na | S | O |
| :--- | :---: | :---: | :---: |
| percentage | 32.4 | 22.5 | 45.1 |
| Relative atomic masses | 23 | 32 | 16 |
| (RAM) |  |  |  |
| Moles $=\frac{\text { percentage }}{\text { RAM }}$ | $\frac{32.4}{23}=1.4$ | $\frac{22.5}{32}=0.7$ | $\frac{45.1}{16}=2.8$ |
| Mole ratio <br> (divide by smallest value) <br> Empirical formula | 2 | 1 | 4 |

## Example 2

A compound contains oxygen and copper only. The molecular mass is 159.0 . What is its Empirical and molecular formula if the percentage of copper is 76

## Solution

Percentage of oxygen $=100-76=24 \%$

| Elements | Cu | O |  |
| :--- | :---: | :--- | :--- |
| percentages <br> Relative atomic mass | 76 |  | 24 |
| Number of moles $=\frac{\text { percentage }}{\text { RAM }}$ | 64 |  | 16 |
|  |  |  |  |
| Mole ratio <br> (divide by smallest value) | $\frac{76}{64}=1.875$ |  | $\frac{24}{16}=1.5$ |
|  |  | $\frac{1.875}{1.5}=1$ | $\frac{1.5}{1.5}=1$ |

Empirical formula

$$
\mathrm{CuO}
$$

| Molecular formula |  |  |
| :---: | :---: | :---: |
| $(\mathrm{CuO}) \mathrm{n}$ | $=$ | 159 |
| $64 n+16 n$ | = | 159 |
| $80 \mathrm{n}=$ | 159 |  |
| n | 159 |  |
|  | 80 |  |
| n | 1.98 |  |
| n | 2 (al | ays n |

Therefore molecular formula of $\mathbf{C u O}=\mathbf{C u}_{2} \mathbf{O}_{2}$

## Exercise

1. A compound contains $53.3 \%$ oxygen, $6.7 \%$ hydrogen and $40 \%$ carbon. The simplest formula of compound is $(\mathrm{C}=12, \mathrm{H}=1 \mathrm{O}=16)$
A. CHO ,
B. $\mathrm{CH}_{2} \mathrm{O}$
C. $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}$
$\mathrm{CH}_{2} \mathrm{O}_{2}$
2. The oxide of P contains $50 \%$ by mass P . Its relative molecular mass is 64 . What is the formula of the oxide $(\mathrm{P}=32,0=16)$
A. PO,
B. $\mathrm{PO}_{2}$
C. $\mathrm{P}_{2} \mathrm{O}$ D. $\mathrm{PO}_{3}$
3. A white powder is made of 24 percent carbon and 76 percent fluorine atoms. Its simplest formula is
A. $\mathrm{CF}_{2}$
B. $\mathrm{C}_{2} \mathrm{~F}_{4}$
C. $\mathrm{CF}_{3}$
D. $\mathrm{CF}_{4}$
4. 6.6 g of am element M , combine with excess oxygen to give 8.1 g of oxide. The simplest formula of the oxide is ( $\mathrm{M}=65,0=16$ )
A. $\mathrm{M}_{2} \mathrm{O}$
B. MO
C. $\mathrm{MO}_{2} \mathrm{D} . \mathrm{M2O}_{3}$
5. 12.7 g of metal R , reacts completely with 11.3 g of oxygen to form oxide. Which one of the following is the formula of oxide of $R$ ? $(R=27,0=16)$
A. $\mathrm{R}_{3} \mathrm{O}_{2}$
B. $\mathrm{RO}_{2}$
C. $\mathrm{R}_{2} \mathrm{O}$ D. $\mathrm{R}_{2} \mathrm{O}_{3}$
6. A hydrocarbon contains 4.8 g of carbon and 0.8 g of hydrogen. The empirical formula of the hydrocarbon is
A. $\mathrm{C}_{2} \mathrm{H}$
B. $\mathrm{CH}_{4}$
C. $\mathrm{CH}_{2}$
D. $\mathrm{C}_{6} \mathrm{H}$
7. An oxide of metal M , contains $86.6 \% \mathrm{M}$. the empirical formula of the oxide is $(0=$ 16; $\mathrm{M}=207$ )
A. MO
B. $\mathrm{M}_{2} \mathrm{OC} . \mathrm{MO}_{2}$
D. $\mathrm{M}_{2} \mathrm{O}_{3}$
8. 

2.50 g of an oxide of metal M , was reduced by hydrogen to 1.98 g .
(a) Calculate the moles of atoms of
(i) M in oxide $(\mathrm{M}=64)$
(ii) Oxygen in the oxide $(\mathrm{O}=16)$
(b) Determine the molecular formula of the oxide of M. ( $1 \frac{1}{2}$ marks)
(c) Name two other gases that can be used instead of hydrogen (2mark)
9.

Hydrocarbon Z of molecular formula 56 consists of $85.7 \%$ of carbon by mass.
(a) Define the term hydrocarbon (1marks)
(b) Calculate empirical formula of Z.
(c) Determine the molecular formula of Z .
10. A Compound Y of molecular formula $=46$ consists of $52.2 \%$ carbon, $13.0 \%$ hydrogen and $34.8 \%$ oxygen by mass. ( $\mathrm{H}=1, \mathrm{C}=12, \mathrm{O}=16$ )
(a) Calculate the empirical formula of Y
(b) Determine the molecular formula of Y
(c) Combustion of Y is highly exothermic. Suggest one use of Y .
11. A compound $Y$ consist of $92.31 \%$ carbon and $7.69 \%$ hydrogen. The formula mass of Y is 26 .
(a) Calculate the empirical formula of Y
(b) Determine molecular formula of Y
(c) Write structural formula of Y
12. A hydrocarbon, R , contains $80 \%$ carbon by mass.
(a) Calculate empirical formula of $R$.
(b) If the molecular mass of R is 30 . Determine molecular formula of R
(c) Write the formula for complete combustion of R
13. The molecular mass of gas X is 28 and its empirical formula is $\mathrm{CH}_{2}$.
(a) Determine the molecular formula of X .
(b) Write
(i) the structural formula of X
(ii) the equation for the reaction between X and bromine
(c) (i) Name any other reagent that could be used to identify X
(ii) State what would be observed if the reagent named in (c)(i) was reacted with X.
14. A compound Z of molecular formula AxBy consist of $8.57 \% \mathrm{~A}, 45.71 \% \mathrm{~B}$ and $45.72 \%$ of water
(a) Determine the values of $\mathrm{x}, \mathrm{y}$ and $\mathrm{n} .(\mathrm{H}=1, \mathrm{O}=16, \mathrm{~A}=27, \mathrm{~B}=96)$
(b) Write the molecular formula of Z .
15. Excess carbo monoxide was passed over 4.0 g of heated oxide of iron Y , 2.8 g of iron was formed.
(a) Determine the molecular formula of $\mathrm{Y} .(\mathrm{O}=16, \mathrm{Fe}=56)$
(b) Write equation for the reaction between Y and carbon monoxide.
16. A compound $Y$, consists $52.17 \%$ carbon, $13.04 \%$ hydrogen and $34.78 \%$ oxygen. The relative molecular mass of Y is 46 .
(a) Determine the
(i) Empirical formula of Y (03mark)
(ii) Molecular formula of Y (1mark)
(b) When Y was heated with concentrated sulphuric acid, a colourless gas, Z which turned bromine water colourless was evolved. Identify
(i) Y
(ii) Z
$\qquad$
$\qquad$

## Answers

Answers working
1 B

| Element | carbon | hydrogen | oxygen |
| :--- | :---: | :---: | :---: |
| percentage | 40 | 6.7 | 53 |
| RAM | 12 | 1 | 16 |
| moles | $\frac{40}{12}=3.3$ | $\frac{6.7}{1}=6.7$ | $\frac{53.3}{16}=3.3$ |

2 B

| Mole ratio | 1 | 2 | 1 |
| :--- | :---: | :---: | :---: |
| Formula | $\mathrm{CH}_{2} \mathrm{O}$ |  |  |

3 A

4 A

5 D

6 C

| Element | C | F |
| :--- | :---: | :---: |
| percentage | 24 | 76 |
| RAM | 12 | 19 |
| moles | $\frac{24}{12}=2$ | $\frac{76}{19}=4$ |
| Mole ratio | 1 | 2 |
| Formula | $\mathrm{CF}_{2}$ | M |
| Element | 6.6 | O |
| Mass | 65 | 8.1 |
| RAM | $\frac{6.6}{65}=0.1$ | $\frac{8.1}{16}=0.5$ |
| moles | 2 | 1 |
| Mole ratio | $\mathrm{M}_{2} \mathrm{O}$ | R |
| Formula | 12.7 | O |
| Element | 27 | 11.3 |
| Mass | $\frac{12.7}{27}=0.47$ | $\frac{11.3}{16}=0.7$ |
| RAM | 2 | 3 |
| moles | $\mathrm{R}_{2} \mathrm{O}_{3}$ | C |
| Mole ratio | 4.8 | H |
| Formula | 12 | 0.8 |
| Element | $\frac{4.8}{12}=0.4$ | $\frac{0.8}{1}=0.8$ |
| Mass | 1 | 2 |
| RAM | $\mathrm{CH}_{2}$ |  |
| moles |  |  |
| Mole ratio | Formula |  |


| 7 | Percentage of oxygen $=100-86.6=13.4$ |  |  |  |
| :--- | :--- | :--- | :---: | :---: |
| C | Element | M | O |  |
|  | percentage | 86.6 | 13.4 |  |
|  | RAM | 207 | 16 |  |
|  | moles | $\frac{86.6}{207}=0.42$ | $\frac{13.4}{16}=0.84$ |  |
|  |  | 1 | 2 |  |
|  | Mole ratio | $\mathrm{MO}_{2}$ |  |  |
|  | Formula |  |  |  |

8 (a)(i) Mass of metal, $\mathrm{M}=1.98$

$$
\text { Moles }=\frac{1.98}{65}=0.031
$$

(ii) Mass of oxygen $=2.50-1.98=0.52 \mathrm{~g}$

Moles $=\frac{0.52}{16}=0.032$
(b)

| Element | M | O |
| :--- | :---: | :---: |
| moles | 0.031 | 0.032 |
| Mole ratio | 1 | 1 |

Formula: MO
(c) Ammonia

Carbon monoxide
9. (a) Hydrocarbon is a substance that contains carbon and hydrogen only
(b) Percentage of hydrogen $=100-85.7=14.3 \%$

| Element | C | H |
| :--- | :---: | :---: |
| Percentage | 85.7 | 14.3 |
| RAM | 12 | 1 |
| Moles | $\frac{85.7}{12}=7.14$ | $\frac{14.3}{1}=14.3$ |
| Mole ratio | 1 | 2 |

Formula: $\mathrm{CH}_{2}$
(c) $\quad\left(\mathrm{CH}_{2}\right) \mathrm{n}=56$

$$
14 \mathrm{n}=56
$$

$$
\mathrm{n}=4
$$

Molecular formula $\mathrm{C}_{4} \mathrm{H}_{8}$
10. (a)

| Element | C | H | O |
| :--- | :---: | :---: | :---: |
| Percentage | 52.2 | 13 | 34.8 |
| RAM | 12 | 1 | 16 |
| Moles | $\frac{52.2}{12}=4.35$ | $\frac{13}{1}=13$ | $\frac{34.8}{16}=2.175$ |
| Mole ratio | 2 | 6 | 1 |

Formula: $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
(b) $\quad\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\right) \mathrm{n}=46$
$(12 \times 2+1 \times 6+16 \times 1) n=46$

$$
\mathrm{n}=1
$$

therefore, molecular formula: $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
(c) Y is used as fuel
11. (a)

| Element | C | H |
| :--- | :---: | :---: |
| Percentage | 92.31 | 7.69 |
| RAM | 12 | 1 |
| Moles | $\frac{92.31}{12}=7.69$ | $\frac{7.69}{1}=7.69$ |
| Mole ratio | 1 | 1 |

Empirical formula: CH
(b) $\quad(\mathrm{CH}) \mathrm{n}=26$
$13 n=26$
$\mathrm{n}=2$
molecular formula $\mathrm{C}_{2} \mathrm{H}_{2}$
(c)


12 (a) Percentage of hydrogen $=100-80=20 \%$

| Element | C | H |
| :--- | :---: | :---: |
| Percentage | 80 | 20 |
| RAM | 12 | 1 |
| Moles | $\frac{80}{12}=6.7$ | $\frac{20}{1}=20$ |
| Mole ratio | 1 | 3 |

Formula: $\mathrm{CH}_{3}$
(b) $\quad(\mathrm{CH} 3) \mathrm{n}=30$
$\mathrm{n}(12+3)=30$
$15 \mathrm{n}=30$
$\mathrm{n}=2$
molecular formula: $\mathrm{C}_{2} \mathrm{H}_{6}$
$2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \quad 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
13
(a) $\left(\mathrm{CH}_{2}\right) \mathrm{n}=28$

$$
\begin{aligned}
14 \mathrm{n} & =28 \\
\mathrm{n} & =2
\end{aligned}
$$

molecular mass $=\mathrm{C}_{2} \mathrm{H}_{4}$
(b)(i)

(b)(ii) $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{Br}_{2} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$
(c)(i) Acidified potassium permanganate
(ii) Decolorise

14 (a) Formula mass of water, $\mathrm{H}_{2} \mathrm{O}=1 \mathrm{x} 2+16=18$

| Components | A | B | $\mathrm{H}_{2} \mathrm{O}$ |
| :--- | :---: | :---: | :---: |
| Percentage | 8.57 | 45.71 | 45.71 |
| RAM | 16 | 96 | 18 |
| Moles | $\frac{8.57}{16}=0.53$ | $\frac{45.71}{96}=0.48$ | $\frac{45.72}{18}=2.54$ |
| Mole ratio | 1 | 1 | 5 |
| $\mathrm{x}=1$ <br> $\mathrm{y}=1$ <br> $\mathrm{n}=5$ |  |  |  |

(b) $\mathrm{AB} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
(a) Mass of iron $=2.8 \mathrm{~g}$

Mass of oxygen $=4.0-2.8=1.2 \mathrm{~g}$

| Element | Fe | O |
| :--- | :---: | :---: |
| Mass | 2.8 | 1.2 |
| RAM | 56 | 16 |
| Moles | $\frac{2.8}{56}=0.05$ | $\frac{1.2}{16}=0.075$ |
| Mole ratio | 2 | 3 |

Formula is $\mathrm{Fe}_{2} \mathrm{O}_{3}$
(b) $\quad \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{g}) \longrightarrow 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{CO}_{2}(\mathrm{~g})$
(a)(i)

| Components | C | H | O |
| :--- | :---: | :---: | :---: |
| Percentage | 52.17 | 13.04 | 34.54 |
| RAM | 12 | 1 | 16 |
| Moles | $\frac{52.17}{12}=4.3$ | $\frac{13.04}{1}=13.04$ | $\frac{34.54}{16}=2.1$ |
| Mole ratio | 2 | 6 | 1 |

Emperical formula $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
(ii) $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\right) \mathrm{n}=46$
$46 n=46$
$\mathrm{n}=1$
molecular formula is $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
(b)(i) $\mathrm{Y}=$ Ethanol
(ii) $\mathrm{Z}=$ Ethene

