ACIDS, BASES AND SALTS

Definition of an acid

An acid is a compound which when dissolved in water produces hydrogen ions as the only positively charged ions

What causes the acidic properties of acids?
The hydrogen ions $\left(\mathrm{H}^{+}\right)$cause the acidic properties and these are formed in the presence of water.

Another term to refer to an acid

An acid is called a proton donor

Why an acid is also called a proton donor?
It's because an acid provides protons or hydrogen ions $\left(\mathrm{H}^{+}\right)$to other substances during the reaction.

Substance to which an acid provides protons	A base is then called	Why the base is called a proton acceptor?	Equation for the reaction between acid and base
BASE	PROTON ACCEPTOR	Because the base accepts hydrogen ions from acids	$\mathrm{H}^{+}\left(\mathrm{aq)}+\overline{\mathrm{OH}_{(\mathrm{aq})}} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(1)}\right.$

Common laboratory acids		These three common laboratory acids are also called	Why these acids are also called mineral acids?
Hydrochloric acid	HCl	MINERAL ACIDS	They are derived from mineral salts ie chlorides for $\mathrm{HCl} l$, sulphates for $\mathrm{H}_{2} \mathrm{SO}_{4}$ and nitrates for HNO_{3}
Sulphuric acid	$\mathrm{H}_{2} \mathrm{SO}_{4}$		
Nitric acid	HNO_{3}		

Other mineral acids known		Mineral salts from which the acid is derived	Organic acids known	Naturally occurring acids
Sulphurous acid	$\mathrm{H}_{2} \mathrm{SO}_{3}$	Derived from sulphites	Ethanoic acid ($\mathrm{CH}_{3} \mathrm{COOH}$)	CITRIC ACID from lemons
Carbonic acid	$\mathrm{H}_{2} \mathrm{CO}_{3}$	Derived from carbonates		TARTARIC ACID from grapes
Phosphoric acid	$\mathrm{H}_{3} \mathrm{PO}_{4}$	Derived from phosphates	Methanoic acid (HCOOH)	ACETIC ACID from vinegar
Nitrous acid	HNO_{3}	Derived from nitrites		LACTIC ACID from sour milk
				Hydrochloric acid from digestive juices

| Whenever an acid is dissolved in
 water, it produces | Term given to the number of hydrogen
 ions produced by one molecule of an acid | Definition of basicity of an acid
 HYDROGEN IONS\quad BASICITY OF AN ACID |
| :---: | :---: | :--- | | BASICITY of an acid is the number of |
| :--- |
| hydrogen ions produced by one |
| molecule of an acid in aqueous |
| solution. |

Basicity can also be defined as
BASICITY of an acid is the number of hydrogen ions produced by one molecule of an acid when dissolved in water.

Categorization of acids depending on basicity

Monobasic acids

Dibasic acids

Tribasic acids

Definition of	Its basicity	Examples of acids	Ionization equations of acids
Monobasic acid is an acid whose one molecule produces one hydrogen ion when dissolved in water. OR Monobasic acid is an acid whose one molecule produces one hydrogen ion when in aqueous solution.	Basicity of monobasic acids is ONE	Nitric acid	$\mathrm{HNO}_{3(\text { aq) }} \longrightarrow \mathrm{H}^{+}$(aq) $+\mathrm{NO}_{3(\text { aq) }}^{-}$
		Hydrochloric acid	$\mathrm{HCl}_{\text {aq }} \longrightarrow \mathrm{H}^{+}{ }_{\text {aq }}+\mathrm{Cl}_{\text {aq }}^{-}$
		Nitrous acid	$\mathrm{HNO}_{2(\mathrm{aq})} \longrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{NO}_{2(a q)}^{-}$
		Ethanoic acid	$\mathrm{CH}_{3} \mathrm{COOH}_{(\text {(aq) }} \longrightarrow \mathrm{H}^{+}{ }_{\text {(aq) }}+\mathrm{CH}_{3} \mathrm{COO}_{(\text {(aq) }}$
		Hypochlorous acid	$\mathrm{HOCl}_{\text {aq }} \longrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OCl}_{\text {aq }}$
		Methanoic acid	$\mathrm{HCOOH}_{(\mathrm{aq})} \longrightarrow \mathrm{H}^{+}\left(\mathrm{aq)}\right.$ $+\mathrm{HCOO}_{(\text {(aq) }}$
		Have general formula of $\mathbf{H X}$	
Dibasic acid is an acid whose one molecule produces two hydrogen ions when dissolved in water. OR Dibasic acid is an acid whose one molecule produces two hydrogen ions when in aqueous solution.	Basicity of Dibasic acids is TWO	Sulphuric acid	$\mathrm{H}_{2} \mathrm{SO}_{4(\text { (aq) }} \longrightarrow 2 \mathrm{H}^{+}\left(\mathrm{aq)}\right.$ $+\mathrm{SO}_{4}{ }^{2-(\text { aq) }}$
		Carbonic acid	$\mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq})} \rightleftharpoons 2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}$ (aq)
		Sulphurous acid	$\mathrm{H}_{2} \mathrm{SO}_{3(\mathrm{aq)}} \rightleftharpoons 2 \mathrm{H}^{+}\left(\right.$aq) ${ }^{\text {a }}+\mathrm{SO}_{3}{ }^{2-}$ (aq)
		Have general formula of $\mathbf{H}_{2} \mathbf{X}$	The double half arrows (\rightleftharpoons) imply that the ionization of such an acid is reversible. Double half arrows (\rightleftharpoons) mainly apply to weak acids
Tribasic acid is an acid whose one molecule produces three hydrogen ions when dissolved in water. OR Tribasic acid is an acid whose one molecule produces three hydrogen ions when in aqueous solution.	Basicity of Tribasic acids is THREE	Phosphoric acid	$\mathrm{H}_{3} \mathrm{PO}_{4(\mathrm{aq})} \rightleftharpoons 3 \mathrm{H}^{+}{ }_{\text {aq }}+\mathrm{PO}_{4}{ }^{3-}(\mathrm{laq})$
		Have general formula of $\mathbf{H}_{3} \mathbf{X}$	Important note on basicity of an acid Basicity of an acid is not necessarily the number of hydrogen atoms contained in one molecule of the acid. Basicity refers to the number of hydrogen atoms capable of ionization in an acid for example; In $\mathrm{CH}_{3} \mathrm{COOH}$, its only one hydrogen atom that can ionize. The other three hydrogen atoms are incapable of ionization, THUS $\mathrm{CH}_{3} \mathrm{COOH}$ has basicity of 1

TYPE OF ACIDS	DEFINITION 1	DEFINITION 2
Strong acids	A strong acid is an acid which when dissolved in water produces ALL the hydrogen ions it contains.	A strong acid is an acid which completely ionizes in dilute solution.
Weak acids	A weak acid is an acid which when dissolved in water produces PART of the hydrogen ions it contains.	A weak acid is an acid which only slightly ionizes in dilute solution.

Examples of strong acids	Ionization equation for the acid when dissolved in water
Hydrochloric acid	$\mathrm{HCl}_{\text {aq }} \longrightarrow \mathrm{H}^{+}$(aq) $+\mathrm{Cl}_{\text {laq) }}$
Sulphuric acid	$\mathrm{H}_{2} \mathrm{SO}_{4(\text { (aq) }} \longrightarrow 2 \mathrm{H}^{+}\left(\mathrm{aq)}\right.$ + ${ }^{\text {a }}$ - $\mathrm{SO}_{4}{ }^{2-(\text { (aq) }}$
Nitric acid	$\mathrm{HNO}_{3(\mathrm{aq})} \longrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{NO}_{3(\text { aq) }}^{-}$

Examples of weak acids	Ionization equation for the acid when dissolved in water
carbonic acid	$\mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq})} \rightleftharpoons 2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-(\mathrm{aq})}$
phosphoric acid	$\mathrm{H}_{3} \mathrm{PO}_{4(\mathrm{aq})} \rightleftharpoons 3 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{PO}_{4}^{3-(\mathrm{aq})}$
Ethanoic acid	$\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})} \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}_{(\mathrm{aq})}$
Methanoic acid	$\mathrm{HCOOH}_{(\mathrm{aq})} \approx \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HCOO}_{(\mathrm{aq})}$

STATEMENT(S)		REASON(S)
When a piece of aluminium foil is placed in a test tube containing cold dilute hydrochloric acid, no reaction occurs.	BECAUSE	A thin protective layer forms on aluminium as soon as the metal is exposed to moist air, which prevents any reaction.
When a piece of aluminium foil is placed in a test tube containing cold dilute sulphuric acid, no reaction occurs.	BECAUSE	A thin protective layer forms on aluminium as soon as the metal is exposed to moist air, which prevents any reaction.
If a piece of aluminium foil is placed in a test tube containing warm acid, a reaction occurs after a short while.	BECAUSE	The oxide layer on aluminium dissolves in the warm acid exposing the metal which reacts with the acid.
Copper does not liberate hydrogen with dilute acids.	BECAUSE	Copper is below hydrogen in the electrochemical series, thus cannot displace it from dilute acids.
Nitric acid does not liberate hydrogen with nitric acid except magnesium.	BECAUSE	Nitric acid is a strong oxidizing agent. It oxidizes the hydrogen formed immediately into water.

NOTE;
Magnesium only reacts with nitric acid when it is very dilute.
$\mathrm{Mg}_{(\mathrm{s})}+2 \mathrm{HNO}_{3(\mathrm{aq)}} \longrightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2(\text { aq) }}+\mathrm{H}_{2(\mathrm{~g})}$

BASES AND ALKALIS

Definition of a base

A base is a substance which reacts with an acid to form a salt and water only.

| In general terms, bases are; | A reaction where an acid reacts with a base is called |
| :--- | :---: | :--- |
| Oxides of metals | NEUTRALIZATION REACTION |
| Hydroxides of metals | |
| Ammonium hydroxide | |

NEUTRALIZATION REACTION

Definition of neutralization;

Neutralization is a reaction in which an acid reacts with a base to form a salt and water only.
Many bases exist but only a few are soluble in water

Examples of bases that are soluble in water	These soluble bases are called	Alkalis are also called	
Sodium hydroxide	NaOH	ALKALIS	SOLUBLE BASES
Potassium hydroxide	KOH		
Calcium hydroxide	$\mathrm{Ca}(\mathrm{OH})_{2}$		
Aqueous ammonia	$\mathrm{NH}_{4} \mathrm{OH}$	Alkalis are categorized into STRONG and WEAK alkalis	

Definition of alkalis;

Alkalis are substances which when dissolved in water produce hydroxide ions as the only negatively charged ions.

STRONG ALKALIS	WEAK ALKALIS
These are electrovalent compounds that completely ionize in both aqueous solution and in solid state.	These are covalent compounds that partly ionize in aqueous solution and their ionization is reversible.
Examples of strong alkalis	Example of weak alkalis
1. Sodium hydroxide solution	1. Aqueous ammonia
$\mathrm{NaOH}_{(\text {aq) }} \longrightarrow \mathrm{Na}^{+}\left(\mathrm{aq)}\right.$ + $\overline{\mathrm{O}}_{\text {(aq) }}$	It is also called ammonia solution
2. Potassium hydroxide solution	Aqueous ammonia is also called ammonium hydroxide solution
$\mathrm{KOH}_{(\mathrm{aq})} \longrightarrow \mathrm{K}^{+}\left(\mathrm{qq)}+\overline{\mathrm{OH}}_{(\mathrm{aq})}\right.$	
3. Calcium hydroxide solution	$\mathrm{NH}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}=\sim \mathrm{NH}_{4}^{+}{ }_{(\text {aq) }}+\overline{\mathrm{OH}}_{(\mathrm{aq})}$
$\mathrm{Ca}(\mathrm{OH})_{2(a \mathrm{aq})} \longrightarrow \mathrm{Ca}^{2+}{ }_{\text {(aq) }}+2 \overline{\mathrm{O}}_{(\text {aq) }}$	

PROPERTIES OF ALKALIS

PROPERTIES OF ALKALIS	
Physical properties	Chemical properties
Have a bitter taste	React with acids to form a salt and water only $\mathrm{NaOH}_{(\mathrm{aq})}+\mathrm{HCl}_{\text {laq }} \longrightarrow \mathrm{NaCl}_{\text {(aq) }}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{ll}}$
Have a soapy feeling to touch	Alkalis precipitate insoluble metallic hydroxides from solutions of their salts.$2 \mathrm{NaOH}_{(\mathrm{aq})}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})} \longrightarrow \mathrm{Pb}(\mathrm{OH})_{2(\mathrm{~s})}+2 \mathrm{NaNO}_{3(\mathrm{aq})}$
Change colours of indicators	
Form colourless solutions	

COLOUR OF METAL HYDROXIDES

Metal hydroxide	Colour
Potassium hydroxide	White
Sodium hydroxide	White
Calcium hydroxide	White
Magnesium hydroxide	White
Zinc hydroxide	White
Aluminium hydroxide	White
Lead (ii) hydroxide	White
Copper (ii) hydroxide	Blue
Iron (ii) hydroxide	Green
Iron (iii) hydroxide	Brown

pH SCALE OF ACIDITY AND ALKALINITY

$p H$ scale
Is a scale of numbers from 1 to 14 , to express acidity and alkalinity

$p H$ is related to	$p H$ number
HYDROGEN ION concentration in solution	Is a measure of the hydrogen ion concentration

APPROXIMATE pH VALUES OF COMMON SOLUTIONS					
pH 1	$\mathrm{pH} 2-\mathrm{pH} 6$	pH 7	$\mathrm{pH} 8-\mathrm{pH} 13$	pH 14	
Strong acid	Weak acid	Neutral	Weak alkali	Strong alkali	
Dilute sulphuric acid	Lemon juice $(\mathrm{pH} 2)$	Sodium chloride	Baking powder $(\mathrm{pH} 9)$	Sodium hydroxide	
Dilute nitric acid	Sour milk $(\mathrm{pH} 5)$	Pure water	Wood ash $(\mathrm{pH} 10)$	Potassium hydroxide	

NOTE $\mathbf{1}$	Acidic solutions have pH values less than seven. The smaller the pH value, the more acidic the solution is ie the larger the concentration of hydrogen ions.
NOTE $\mathbf{2}$	When distilled water is added to an acid, the pH value of the acid increases towards seven. The solution becomes less acidic.
NOTE $\mathbf{3}$	Water and other solutions have a pH of seven.
NOTE $\mathbf{4}$	Any solution of pH greater than seven is alkaline. The higher the pH value, the more alkaline the solution is ie the larger the concentration of hydroxyl or hydroxide ions.
NOTE $\mathbf{5}$	When distilled water is added to an alkaline solution, the pH value of the alkali decreases towards seven. The solution becomes less alkaline.

UNIVERSAL INDICATOR

Definition	Forms in which universal indicator occurs	Uses of universal indicator		
Universal indicator is a mixture of indicators.	\checkmark In solution form	\checkmark In paper form	\quad	Determines whether the solution is acidic or
:---				
alkaline.				

pH scale	$1-2$	3	4	5	$6-8$	$9-10$	$11-12$	$13-14$
Colour	Red	Pink	Brown	Yellow	Green	Blue	Indigo	Violet

SIGNIFICANCE OF pH MEASUREMENTS

1. It helps to know that the final product in soap industry is neutral.
2. Too acidic soils are harmful in agriculture, and this can be determined by measuring the pH of the soil.
3. Various drugs are prepared at pHs which must be determined

DEFINITION OF SALT	TYPES OF SALTS	
A salt is a substance formed when all or part of the replaceable hydrogen of an acid is replaced by a metal or metallic radical.	Acid salts	Normal salts

Definition of normal salt

A normal salt is a salt formed when all the replaceable hydrogen of an acid is replaced by a metal or metallic radical.
Examples of normal salts
\checkmark Sodium sulphate
\checkmark Sodium carbonate
\checkmark Potassium nitrate
\checkmark Potassium sulphate
\checkmark Calcium nitrate
\checkmark Aluminium sulphate

Formation of a normal salt

Zinc granules reacting with dilute sulphuric acid.
$\mathrm{Zn}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} \longrightarrow \mathrm{ZnSO}_{4(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}$

Definition of acid salt

An acid salt is a salt formed when part of the replaceable hydrogen of an acid is replaced by a metal or metallic radical. Examples of acid salts
\checkmark Calcium hydrogencarbonate
\checkmark sodium hydrogencarbonate
\checkmark Calcium hydrogensulphate
\checkmark Potassium hydrogencarbonate
\checkmark Calcium hydrogenphosphate
\checkmark Magnesium hydrogencarbonate

Formation of an acid salt

Sodium chloride reacting with concentrated sulphuric acid.
$\mathrm{H}_{2} \mathrm{SO}_{4(1)}+\mathrm{NaCl}_{(\mathrm{s})} \longrightarrow \mathrm{NaHSO}_{4(\mathrm{aq})}+\mathrm{HCl}_{(\mathrm{g})}$

STATEMENT(S)		REASON(S)
Monobasic acids do not form acid salts	BECAUSE	Monobasic acids contain only one atom of replaceable hydrogen per acid molecule.
Sodium ethanoate, $\mathrm{CH}_{3} \mathrm{COONa}$ is a normal salt.	BECAUSE	The hydrogen it contains does not form ions and cannot be replaced by a metal

TYPES OF SALTS AND ACIDS FROM WHICH THEY ARE FORMED

ACID	EXYP OF SALT	EXAMPLE OF THE SALT
Sulphuric acid	Sulphates	Iron (ii) sulphate
Hydrochloric acid	Chlorides	Sodium chloride
Carbonic acid	Carbonates	Potassium carbonate
Nitric acid	Nitrates	Calcium nitrate
Sulphuric acid	hydrogencarbonates	Sodium hydrogencarbonate

PREPARATION OF SOLUBLE SALTS BY

1. ACTION OF AN ACID ON A METAL						
General equation	Metal	Acid		Salt	+	Hydrogen
This method is not suitable for preparation of salts of highly reactive metals for example; - Potassium - Sodium - Calcium		USE	The metals of potassium, sodium and calcium reac explosively with dilute acids			
This method is only used to prepare salts of less reactive metals such as - Aluminium - Zinc - Magnesium - Iron						
Magnesium sulphate can be prepared by using magnesium and dilute sulphuric acid $\mathrm{Mg}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} \longrightarrow \mathrm{MgSO}_{4(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}$						
Iron (ii) sulphate can be prepared by using iron filings and dilute sulphuric acid $\mathrm{Fe}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} \xrightarrow{ } \mathrm{FeSO}_{4(\mathrm{aq})}+\mathrm{H}_{2(g)}$						
EXPERIMENT: Preparation of zinc sulphate crystals						
\checkmark Dilute sulphuric acid is poured in a beaker and granulated zinc is added. \checkmark Effervescence occurs						
\checkmark If the reaction is slow, a little copper (ii) sulphate solution is added as a catalyst and the reactants are warmed gently.						
$\begin{array}{ll}\checkmark & \text { When the reaction stops, moter } \\ \checkmark \text { Excess zinc granules are filt }\end{array}$	inc is ad	to m	ure that the acid	eft in	\checkmark Excess zinc granules are filtered off.	le amount
\checkmark The filtrate is gently heated in an evaporating dish to boil off some water until crystals begin to form, when the filtrate cools, on a glass rod, which is dipped into the filtrate at regular intervals.						
\checkmark The crystals are filtered off and then pressed gently between filter papers to dry.						

PREPARATION OF SOLUBLE SALTS BY

2. ACTION OF AN ACID ON SOLUBLE HYDROXIDE OR CARBONATE

This method is used to prepare salts of potassium, sodium and ammonium

PREPARATION OF; (i) Potassium chloride

$\mathrm{KOH}_{(\mathrm{aq})}$	+	$\mathrm{HCl}_{(\text {(aq) }}$		$\mathrm{KCl}_{\text {(aq) }}$	+	$\mathrm{H}_{2} \mathrm{O}_{(1)}$		
$\mathrm{K}_{2} \mathrm{CO}_{3(\mathrm{aq})}$	+	$2 \mathrm{HCl} l_{\text {aq }}$		$\mathrm{KCl}_{(\text {(aq) }}$	+	$\mathrm{H}_{2} \mathrm{O}_{(1)}$	+	CO

(iii) Ammonium chloride

EXPERIMENT: Preparation of sodium sulphate crystals

\checkmark A known volume of sodium hydroxide solution is pipetted into a conical flask and 2 drops of phenolphthalein added.
\checkmark Dilute sulphuric acid is added from the burette to conical flask at intervals until the colour of the indicator changes to pink.
$2 \mathrm{NaOH}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{aq})}+\quad 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
\checkmark Having noted the volume of the acid used, the solution is poured away as the indicator would colour the salt obtained from it.
\checkmark The whole process is repeated using the same volume of the solution of sulphuric acid and sodium hydroxide solution without adding the indicator.
\checkmark The solution is evaporated until it forms crystals when it cools, on a clean glass rod, which is dipped into the solution at regular intervals.

The crystals are filtered off and then pressed gently between filter papers to dry.

PREPARATION OF SOLUBLE SALTS BY

3. ACTION OF AN ACID ON INSOLUBLE OXIDES OR HYDROXIDES

This method is used to prepare Magnesium sulphate, zinc sulphate and lead (ii) nitrate

PREPARATION OF; (i) Magnesium sulphate

| (ii) Zinc sulphate | |
| :--- | :--- | :--- |
| $\mathrm{ZnO}_{(\mathrm{s})}$ | $+\quad \mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}$ |$\longrightarrow \mathrm{ZnSO}_{4(\mathrm{aq})}+{ }^{2}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$

$$
\mathrm{Zn}(\mathrm{OH})_{2(\mathrm{~s})}+\mathrm{H}_{2} \mathrm{SO}_{4(a \mathrm{aq})} \longrightarrow \mathrm{ZnSO}_{4(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

(iii) Lead (ii) nitrate
$\mathrm{PbO}_{(\mathrm{s})}+\mathrm{HNO}_{3(\mathrm{aq})} \longrightarrow \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
$\mathrm{Pb}(\mathrm{OH})_{2(\mathrm{~s})}+\mathrm{HNO}_{3(\mathrm{aq})} \longrightarrow \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$

EXPERIMENT: Preparation of copper (ii) sulphate crystals
\checkmark Copper (ii) oxide is added to a beaker of warm dilute sulphuric acid and the mixture stirred gently.
\checkmark More of the oxide is added, little at a time until no more reacts, showing that all the acid has been neutralized.
$\mathrm{CuO}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} \longrightarrow \mathrm{CuSO}_{4(\text { aq })}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
\checkmark Excess copper (ii) oxide is filtered off and the filtrate evaporated until crystals begin to form when it cools, on a clean glass rod, which is dipped into the filtrate at regular intervals
\checkmark The crystals are filtered off and then pressed gently between filter papers to dry.

PREPARATION OF SOLUBLE SALTS BY

4. ACTION OF AN ACID ON SOLUBLE INSOLUBLE CARBONATES

The salts of copper (ii) sulphate, copper (ii) nitrate, magnesium sulphate, zinc sulphate, calcium chloride and calcium nitrate are prepared by this method.
Calcium chloride and calcium nitrate are deliquescent and do not form crystals. Their solutions must be evaporated to dryness

PREPARATION OF;	(i) Copper (ii) sulphate $\mathrm{CuCO}_{3(\mathrm{~s})}+\mathrm{H}_{2} \mathrm{SO}_{4(\text { aq) }}$	$\mathrm{CuSO}_{4}(\mathrm{aq})$	+	$\mathrm{H}_{2} \mathrm{O}_{(1)}$	+	$\mathrm{CO}_{2(\mathrm{~g})}$
	(ii) Copper (ii) nitrate $\mathrm{CuCO}_{3(\mathrm{~s})}+2 \mathrm{HNO}_{3(\mathrm{aq})}$ \qquad	$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}$	+	$\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$	+	$\mathrm{CO}_{2(\mathrm{~g})}$
	(iii) Magnesium sulphate $\mathrm{MgCO}_{3(\mathrm{~s})}+\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}$	$\mathrm{MgSO}_{4} \text { (aq) }$	+	$\mathrm{H}_{2} \mathrm{O}_{(1)}$	+	$\mathrm{CO}_{2(\mathrm{~g})}$
	(iv) Zinc sulphate $\mathrm{ZnCO}_{3(\mathrm{~s})}+\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}$	$\mathrm{ZnSO}_{4}(\mathrm{aq})$	+	$\mathrm{H}_{2} \mathrm{O}_{(1)}$	+	$\mathrm{CO}_{2(\mathrm{~g})}$
	(v) Calcium (ii) nitrate $\mathrm{CaCO}_{3(\mathrm{~s})}+2 \mathrm{HNO}_{3(\mathrm{aq})}$	$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}$		$\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$		$\mathrm{CO}_{2(\mathrm{~g})}$
	(vi) Calcium chloride $\mathrm{CaCO}_{3(\mathrm{~s})}+2 \mathrm{HCl}_{(\mathrm{aq})}$	$\mathrm{CaCl}_{2(\text { (aq) }}$	+	$\mathrm{H}_{2} \mathrm{O}_{(1)}$	+	$\mathrm{CO}_{2(\mathrm{~g})}$

EXPERIMENT: Preparation of lead (ii) nitrate crystals

Lead (ii) carbonate is added little at a time to dilute nitric acid in a beaker.
\checkmark Effervescence occurs as carbon dioxide is evolved.
\checkmark More carbonate is added until no more reacts, showing that all the acid has reacted.
$\mathrm{PbCO}_{3(\mathrm{~s})}+2 \mathrm{HNO}_{3(\mathrm{aq})} \longrightarrow \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{CO}_{2(\mathrm{~g})}$
\checkmark The excess carbonate is filtered off and the filtrate evaporated until crystals begin to form when it cools, on a clean glass rod, which is dipped into the filtrate at regular intervals.
\checkmark The crystals are filtered off and then pressed gently between filter papers to dry.

5. PREPARATION OF SALTS BY DIRECT SYNTHESIS	
Salts to which this method applies	APPLIES to both soluble and insoluble salts
Another name for this method	Direct synthesis
Salts prepared by direct synthesis	Used to prepare binary salts, for example;
	\checkmark Chlorides eg anhydrous iron (iii) chloride
	\checkmark Bromides eg aluminium bromide
	\checkmark Sulphides eg iron (ii) sulphide
Definition of direct synthesis	Direct synthesis is the method of preparing soluble and insoluble salts
	directly from their elements.

PREPARATION OF ANHYDROUS IRON (III) CHLORIDE			
Conditions for the reaction	Dry chlorine gas Heating is required		
Equation for the reaction	$2 \mathrm{Fe}_{(\mathrm{s})}+3 \mathrm{Cl}_{2(\mathrm{~g})} \quad$		
Colour of iron (iii) chloride	BROWN		

PREPARATION OF ALUMINIUM CHLORIDE

PREPARATION OF ALUMINIUM CHLORIDE		
Conditions for the reaction	Dry chlorine gas Heating is required	
Equation for the reaction	$2 \mathrm{Al}_{(\mathrm{s})}+3 \mathrm{Cl}_{2(\mathrm{~g})} \quad$	
Colour of aluminium chloride	WHITE	

PREPARATION OF IRON (II) SULPHIDE

PREPARATION OF IRON (II) SULPHIDE	
Conditions for the reaction	Heating is required
Observation made	The mixture glows when heated forming a black solid.
Equation for the reaction	$\mathrm{Fe}_{(\mathrm{s})}+\mathrm{S}_{(\mathrm{g})} \longrightarrow$
Colour of iron (ii) sulphide	BLACK

6. PREPARATION OF INSOLUBLE SALTS BY PRECIPITATION

Method also called	Double decomposition reaction
What is involved in this method?	In this method, two soluble salts are mixed together to give a mixture of a soluble salt and an insoluble salt (precipitate)
PREPARATION OF	(i) Barium sulphate $\mathrm{BaCl}_{2(\mathrm{aq})}+\mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{aq})} \longrightarrow \mathrm{BaSO}_{4(\mathrm{~s})}+2 \mathrm{NaCl}_{\text {(aq) }}$
	$\begin{aligned} & \text { Lii) Lead (ii) chloride (It is soluble in hot water) } \\ & \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+\underset{\mathrm{NaCl}_{(\mathrm{aq})}}{ } \xrightarrow{\text { PbCl }}{ }_{2(\mathrm{~s})}+2 \mathrm{NaNO}_{3(\mathrm{aq})} \end{aligned}$
	(iii) Calcium carbonate
	(v) Calcium sulphate $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2 \text { (aq) }}+\underset{\mathrm{Na}_{2} \mathrm{SO}_{4(\text { aq })}}{ } \longrightarrow \mathrm{CaSO}_{4(\mathrm{~s})}+2 \mathrm{NaNO}_{3(\mathrm{aq})}$

EXPERIMENT: Preparation of lead (ii) sulphate crystals

\checkmark Dilute sulphuric acid is added to warm lead (ii) nitrate solution in a beaker and the mixture is stirred.
\checkmark The white precipitate formed is heated to enable rapid filtration.
\checkmark After filtration, the precipitate is washed several times with hot distilled water to remove soluble impurities.
\checkmark The precipitate is allowed to dry on a filter paper.
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} \longrightarrow \mathrm{PbSO}_{4(\mathrm{~s})}+2 \mathrm{HNO}_{3(\mathrm{aq})}$
NOTE; SODIUM SULPHATE solution may be used instead of SULPHURIC ACID
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+\mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{aq})} \longrightarrow \mathrm{PbSO}_{4(\mathrm{~s})}+2 \mathrm{NaNO}_{3(\text { aq })}$

HYDROLYSIS OF SALTS

Why does a solution of potassium carbonate show basic characteristics?	This is because when in aqueous solution, potassium carbonate hydrolyses in water to form a mixture of a strong alkali (KOH) and a weak acid ($\left.\mathrm{H}_{2} \mathrm{CO}_{3}\right)$. The resultant solution is alkaline because the concentration of hydroxyl ions from the strong alkali is greater than the concentration of hydrogen ions from the weak acid. The strong alkali completely ionizes in solution and the weak acid under goes incomplete ionization.
	$\mathrm{K}_{2} \mathrm{CO}_{3(\mathrm{~s})}+2 \mathrm{H}_{2} \mathrm{O}_{(1)} \xrightarrow{\text { Equation for the reaction }}$

Why does a solution of ammonium chloride show acidic characteristics?	This is because when in aqueous solution, ammonium chloride hydrolyses in water to form a mixture of a strong acid (HCl) and a weak alkali $\left(\mathrm{NH}_{4} \mathrm{OH}\right)$. The resultant solution is acidic because the concentration of hydrogen ions from the strong acid is greater than the concentration of hydroxyl ions from the weak alkali. The strong acid completely ionizes in solution and the weak alkali under goes incomplete ionization.
Equation for the reaction	$\mathrm{NH}_{4} \mathrm{Cl} l_{(\mathrm{s})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \longrightarrow \mathrm{NH}_{4} \mathrm{OH}_{(\text {aq) }}+{ }^{\text {a }}$ ($\mathrm{HCl}_{(\text {aq) }}$

REACTIONS FOR IONIC SALTS

When an ionic salt dissolves in water, its ions separate into free ions. For example; when zinc sulphate is dissolved in water, zinc ions (Zn^{2+}) and sulphate ions ($\mathrm{SO}_{4}{ }^{2+}$)

IONIC EQUATIONS

Ionic equations describe chemical changes by showing only the reacting ions.
Three steps are followed when writing ionic equations;

STEP 1	Write the formal equation.
STEP 2	Write down all the ions in the equation.
STEP 3	The ionic equation is written by omitting the identical ions which appear on both sides of the equation.
Important notes to take; NOTE 2 Gases do not ionize. NOTE 3 Solids do not ionize. (Precipitates do not ionize) NOTE 4 Water does not ionize.	

EXERCISE

Write ionic equations for the following reactions
i) Copper (ii) sulphate solution is added to sodium carbonate solution
ii) Sodium hydroxide solution is added to lead (ii) nitrate solution
iii) Zinc powder is added to copper (ii) sulphate solution
iv) Chlorine gas is passed through a solution of iron (ii) chloride
$v)$ Dilute hydrochloric acid is added to solid calcium carbonate

SOURCE	SPIRE HIGH SCHOOL - GAYAZA
DEPARTMENT	DEPARTMENT OF CHEMISTRY
TOPIC	ACIDS, BASES AND SALTS (O' LEVEL)
WRITER	MULONDO SULAIMAN $\mathbf{0 7 5 6} \mathbf{3 1 5} \mathbf{6 2 2}$

